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Abstract 

    Phase reduction theory for stable limit-cycle solutions of one-dimensional reaction-diffusion systems is developed.  
By locally approximating the isochrons of the limit-cycle orbit, we derive the phase sensitivity function, which is a 
key quantity in the phase description of limit cycles.  As an example, synchronization of traveling pulses in a pair of 
mutually interacting reaction-diffusion systems is analyzed.  It is shown that the traveling pulses can exhibit multi-
modal phase locking. 

© 2012 Published by Elsevier Ltd. Peer-review under responsibility of Takashi Hikihara and Tsutomu Kambe 

Keywords: reaction-diffusion systems; limit cycles; phase reduction; synchronization 

1. Introduction 

    Spontaneous rhythms naturally arise in nonlinear dissipative systems.  Interactions of rhythms can 
organize complex collective dynamics, which may play important functional roles.  The phase reduction 
method is a powerful technique for analyzing interacting groups of regular rhythmic elements typically 
modeled as coupled limit-cycle oscillators.  It is well established for low-dimensional limit-cycle 
oscillators [1-4].  Non-trivial collective dynamics of coupled oscillator systems have been revealed with 
this method, including the macroscopic synchronization transition as a prominent example. 

    The purpose of this work is to extend the applicability of the phase reduction method to stable limit-
cycle oscillations in reaction-diffusion systems with infinite-dimensional phase space.  The isochron of 
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the system, which assigns a scalar phase value to a given spatial pattern in the basin of the limit-cycle 
orbit, can locally be approximated near the unperturbed limit-cycle orbit.  The phase sensitivity function 
of the limit-cycle solution, which quantifies linear response of the phase to weak spatial perturbations, is 
then derived from the approximated isochrons.  Based on this formulation, we analyze a pair of interacting 
traveling pulses in coupled reaction-diffusion systems and reveal their synchronization property.  In 
particular, we show that the traveling pulses can exhibit multi-modal phase locking phenomena due to 
their complex oscillatory spatial profiles. 

2. Phase reduction 

2.1. Phase reduction method for low-dimensional limit-cycle oscillators 

    Here we briefly summarize the phase reduction theory for stable limit-cycle solutions of low-
dimensional ordinary differential equations (ODEs) [1-4].  Let us assume that a dynamical system 

described by has a stable limit-cycle solution , where  is a real 
vector representing the state variable at time t  and T  is the period of the limit-cycle oscillation.  Along 

this limit cycle , we can define a scalar phase variable  which increases at a constant 

rate 1 as  with time.  This phase can then be extended to the neighbourhood of  by 
assigning the same phase value to the set of points in the phase space which eventually converge to the 
same orbit.   This gives a function from a state  near the limit cycle  to a scalar phase , which 

is called the isochron.  The isochron satisfies , so 

that the time and phase are equivalent, and the location on the limit cycle can be specified using the phase 

 as .  Now, if this oscillator is weakly perturbed as , where  represents 

perturbations, the corresponding phase equation at the lowest order is given by ,
where the phase sensitivity function , gradient of the isochron estimated on the 

limit cycle at , is introduced.  Thus, the dynamics of a weakly perturbed limit-cycle oscillator can 
be described by a simple scalar phase equation, which drastically reduces the dimensions of the model.  
This is quite useful in studying the dynamics of interacting oscillators. 
    The phase sensitivity function  encapsulates essential dynamical properties of the weakly 
perturbed oscillator and plays a central role in the phase reduction theory.  It is given by a periodic 
solution of an adjoint equation [4] to the linearized equation of the system near the limit-cycle solution 
(referred to as Malkin’s theorem by Hoppensteadt and Izhikevich in [3]).  It can also be measured 
experimentally by weakly perturbing an oscillator and measuring its phase responses. 

2.2. Extension to reaction-diffusion systems 

    The purpose of this study is to extend the phase reduction method for low-dimensional ODEs to stable 
periodic solutions of reaction-diffusion (RD) systems.  For simplicity, we consider a RD system on a one-
dimensional ring of length  with periodic boundary conditions described by 

,     (1)

where  represents the field variables,  is the location on the ring, and  is a diffusion 
matrix. We assume that Eq. (1) has a stable periodic solution  with period .  As 
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an example of such periodic solutions, we will consider stable traveling pulses in the FitzHugh-Nagumo 
model of neuronal spike transmission on a ring, which can be considered limit-cycle solutions in infinite-
dimensional phase space of Eq. (1).  Other periodic solutions such as nonlinear standing waves or 
localized breathing modes can also be analyzed in the same way. 
    As in the case of low-dimensional ODEs, we can introduce a scalar phase variable 

along the limit-cycle solution  which increases at a constant rate 1 as  with time, and use 
this  to represent the location on the limit cycle.  To extend the phase reduction method for limit-cycle 
solutions of the RD equation, we need further to define the isochron functional , which assigns 
a scalar phase value  to a given spatial profile  of the system which eventually 
converges to the limit-cycle solution .  This is generally difficult, however, for spatial patterns 
near the limit-cycle solution, , a linear approximation to  can be given as 

,    (2)

where the bracket represents the inner product, 

,     (3)

and the function  is a time-periodic solution to the following adjoint equation:  

     (4)

with the initial condition .  Here,  is an adjoint operator to the linearlized 
operator  of the RD equation (1) near the limit-cycle solution  with respect to the inner 
product (3), and  is a zero eigenvector of .  The function  is the phase sensitivity 
function of the limit-cycle solution  of the RD equation (1).   
  Similarly to the case of low-dimensional ODEs, once we now the function , we can simplify the 
RD equation (1) to a single scalar phase equation.  Suppose that a RD system possessing a limit-cycle 
solution  is weakly perturbed as 

,    (5) 

where   represents spatio-temporal perturbations.  We assume that the limit-cycle solution persists 
and can still be approximated as , namely, only its phase is affected by the 
perturbation.  The phase dynamics of the perturbed solution can then given at the lowest order as 

.     (6) 

Thus, the weakly perturbed RD equation (5), which is originally infinite-dimensional, can approximately 
be reduced to a single scalar phase equation (6) near the unperturbed limit-cycle solution .
  We here presented the above results without derivations; details will be reported elsewhere [5,6].  
However, we would stress the similarity of Eq. (4) to the conventional adjoint equation for the phase 
sensitivity function  of ODEs [3,4].  Similar results for a nonlinear Fokker-Planck equation 
describing phase distributions of coupled oscillators have also been obtained in [7-10], which gives the 
collective phase sensitivity of a group of phase oscillators undergoing macroscopic oscillations. 
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3. Phase sensitivity functions of traveling pulses 

    Let us illustrate the above result using an example of the FitzHugh-Nagumo (FHN) model of neuronal 
spike transmission [11].  The FHN model is a two-variable activator-inhibitor system, 

,     (7) 

where  represents the activator which spontaneously increases,  represents the inhibitor which 
suppresses the activator, and  are parameters.  It is assumed that only the activator diffuses while 
the inhibitor does not diffuse at all.  In Fig.1, two typical limit-cycle solutions (traveling pulses) 
of the FHN model are shown as well as their phase sensitivity functions  obtained by numerically 
solving the adjoint equation (4).  Only the components corresponding to the activator variable at 
are plotted.  Figure 1(a) shows a normal solution with a simple tail, and Fig. 1(b) shows a “wavy” 
solution with an oscillatory tail (see the caption for detailed parameter values), each of which moving to 
the right with a constant velocity and without changing the spatial profile. 

From Fig. 1(a), we see that the phase sensitivity function  of the normal traveling pulse takes 
large positive values immediately in front of the pulse, then takes negative values slightly more ahead of 
this region, and vanishes elsewhere.  This shape of the phase sensitivity function can be understood as 
follows.  When the activator is raised by the external perturbation at the pulse front, the traveling pulse 
can proceed more quickly, resulting in the advance in its phase (note that the phase of the pulse is simply 
its location on the ring).  However, if the activator is raised slightly more ahead of the pulse front, the 
increase in the activator then induces inhibitor growth, which eventually suppresses the progress of the 
pulse front and leads to the delay in its phase.  In other regions, the movement of the pulse is not affected 
by external perturbations (as long as the perturbations are weak).  Figure 1(b) shows a traveling pulse 
with a wavy tail.  Correspondingly, the phase sensitivity function  has a complex shape, which 
oscillates in front of the pulse.  Thus, the phase of the pulse can advance or retard depending on the 
timing and location of the perturbation applied to the activator.  This leads to an interesting multi-modal 
phase locking behavior between two traveling pulses as we illustrate in the next section. 

Fig. 1. Stable traveling pulses  and phase sensitivity function  of the FitzHugh-Nagumo model (activator 
components).  (a) Normal pulse at ; (b) Wavy pulse at 
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4. Synchronization between traveling pulses in coupled reaction-diffusion systems 

    As an application of the theory, we consider synchronization between traveling pulses of two coupled 
RD systems [11].  Suppose two coupled layers of identical RD systems described by 

,                

,      (8) 

where  and  represent the RD systems in layers A and B, respectively, and the two layers 
are diffusively coupled with each other through a small coupling constant .  We assume that each of the 
RD systems has a stable traveling-pulse solution  when the mutual coupling is absent 
( ), where  and  represent the phases (locations) of the unperturbed stable traveling 
pulses in layers A and B, respectively, and that these traveling-pulse solutions persist even if weak 
coupling is introduced between the layers ( )
    Using the phase sensitivity function  obtained in the previous section, we can reduce the 
coupled RD systems described by Eq. (8) to a pair of coupled phase equations, 

,                  

,            (9) 

by plugging the mutual coupling  or  as the perturbation 
 in Eq. (6).  Moreover, we can adopt the averaging procedure [1-3] to Eq. (9) because  is assumed 

to be small, which yields the following coupled phase equations: 

,     ,    (10) 

where the phase coupling function is given by 

 ,       (11) 

and similarly for .  From Eq. (10), the phase difference  obeys 

     (12) 

where  is the antisymmetric part of the phase coupling function  .  Therefore, the 
phase difference between the traveling pulses in systems A and B can take stationary 
values at the stable fixed points of Eq. (12) satisfying  and .  In particular, the 
in-phase locked state  of the two traveling pulses is stable if .
    In Fig. 2, results of the phase reduction for the wavy traveling pulse of the FHN equation, shown in Fig. 
1(b), are summarized.  Figure 2(a) shows the asymmetric part of the phase coupling function, .
Reflecting the wavy shape of the traveling pulse and the corresponding phase sensitivity function,  has 
also a wavy shape with many zero crossings satisfying  and .  Therefore, the 
two traveling pulses can synchronize at various phase differences, which we call multi-modal phase 
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locking [12].  Figure 2(b) plots the asymptotic stationary phase differences between the pulses obtained 
by direct numerical simulations of Eq. (8) as a function of the initial phase differences and compares them 
with the prediction of the phase-reduced equation (10) or (12) with  plotted in Fig. 2(a), showing 
reasonably good agreement.  Figures 2(c) and 2(d) show typical states of the system sufficiently after 
initial transient, in which snapshots of the activator components of the two RD layers are plotted.  We can 
observe that the two pulses are phase locked with the phase differences shown in Fig. 2(b).  It is 
interesting that the completely in-phase synchronized state with  has a very small basin of 
attraction, while other phase-locking states have wider basins of attraction.  Similar multi-modal phase 
locking is also observed in coupled delay-induced oscillators, which are also infinite-dimensional [12]. 

5. Summary 

We briefly explained the framework of phase reduction approach to limit-cycle solutions in infinite-
dimensional reaction-diffusion systems using the traveling pulse on a one-dimensional ring as an example, 
and showed that the reduced phase equations can nicely predict the synchronization property of two 
coupled layers of reaction-diffusion systems exhibiting traveling pulses.  Interacting traveling pulses have 
been analyzed within the interface dynamics approach in the past.  An advantage of our approach to the 
conventional method is that it can be applicable to systems without spatial translational symmetry. For 
example, we can also analyze synchronization of coupled breathing modes, target patterns, and spirals in 
coupled reaction-diffusion systems as well.  Essentially the same framework can also be generalized to 
synchronization between coupled fluid convections [13].  Further details will be reported in [6] and [13]. 

Fig. 2. Phase locking between two coupled reaction-diffusion layers of the FitzHugh-Nagumo model exhibiting traveling pulses.  
The parameters of each layer are the same as in Fig. 1(b) (wavy pulse).  The coupling strength between the layers is .  (a) 
Antisymmetric part of the phase coupling function (b) Asymptotic phase differences obtained by direct numerical simulations of 
the original model compared with the prediction of the phase reduction method;  (c), (d) Stable phase-locked traveling pulses 
(activator components) sufficiently after initial transient, started from varied initial phase differences. 
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