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Reaction-diffusion systems can describe a wide class of rhythmic spatiotemporal patterns observed in
chemical and biological systems, such as circulating pulses on a ring, oscillating spots, target waves, and
rotating spirals. These rhythmic dynamics can be considered limit cycles of reaction-diffusion systems.
However, the conventional phase-reduction theory, which provides a simple unified framework for
analyzing synchronization properties of limit-cycle oscillators subjected to weak forcing, has mostly been
restricted to low-dimensional dynamical systems. Here, we develop a phase-reduction theory for stable
limit-cycle solutions of reaction-diffusion systems with infinite-dimensional state space. By generalizing
the notion of isochrons to functional space, the phase-sensitivity function—a fundamental quantity for
phase reduction—is derived. For illustration, several rhythmic dynamics of the FitzHugh-Nagumo model
of excitable media are considered. Nontrivial phase-response properties and synchronization dynamics
are revealed, reflecting their complex spatiotemporal organization. Our theory will provide a general basis
for the analysis and control of spatiotemporal rhythms in various reaction-diffusion systems.
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I. INTRODUCTION

Phase-reduction theory provides a general framework to
simplify multidimensional ordinary differential equations
(ODEs) describing weakly perturbed limit-cycle oscillators
to one-dimensional approximate phase equations [1–5].
It has drastically facilitated theoretical and experimental
analysis of the synchronization properties of weakly
interacting nonlinear oscillators such as chemical oscilla-
tors and spiking neurons [1–9]. Methods for controlling
limit-cycle oscillators have also been developed on the
basis of phase-reduction theory [10–13].
In real-world systems, rhythmic dynamics often arise

collectively from a number of spatially distributed interact-
ing elements, rather than from a single isolated oscillator,
e.g., heartbeats generated by an ensemble of pulsating
cardiac cells [1,14–16]. Such systems are often modeled
by reaction-diffusion (RD) systems, and the collective

spatiotemporal rhythms are described by stable limit-cycle
solutions of the RD systems [1,2,17–25]. Synchronization
of collective spatiotemporal rhythms has been investigated
experimentally in chemical systems [26,27] and may be of
significant practical importance, e.g., in biomedical engi-
neering [14–16]. In order to analyze and control the
dynamics of collective spatiotemporal rhythms, it is desir-
able to develop a phase-reduction theory for the RD
systems.
Various types of low-dimensional phase equations have

been derived for RD systems, in particular, for traveling
pulses [2,24,25,28–34] and for rotating spirals [35,36]. In
most cases, it is assumed that the system is symmetric with
respect to continuous spatial translation or rotation and the
spatial structure is rigidly translating or rotating, so that
their location or angle is simply identified as the phase.
However, such assumptions exclude various intriguing
rhythmic dynamics of RD systems that lack continuous
spatial symmetry. Since limit cycles are essentially asso-
ciated with temporal translational symmetry, we should be
able to derive phase equations from general RD systems
without recourse to spatial symmetry.
Our goal in the present study is to develop,

without assuming any spatial symmetry or rigidity, a
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phase-reduction theory for weakly perturbed RD systems
exhibiting stable rhythmic dynamics. We solve this prob-
lem by generalizing the conventional phase-reduction
theory for ODEs to RD systems. Our theory gives a
systematic method to approximate rhythmic dynamics of
RD systems with infinite-dimensional state space by one-
dimensional phase equations, thereby facilitating detailed
analysis of the synchronization dynamics of rhythmic
spatiotemporal patterns. As a simple example, we analyze
mutual synchronization between two interacting layers of
RD systems exhibiting rhythmic dynamics. The proposed
theory provides a simple, unified description of rhythmic
spatiotemporal patterns and will be the basis for developing
methods to control and design rhythmic spatiotemporal
patterns in RD systems.
This article is organized as follows: In Sec. II, essential

results of the proposed phase-reduction theory for RD
systems exhibiting spatiotemporal rhythms and its appli-
cation to mutual synchronization of coupled RD systems
are presented; details of the theory are given in Appendix B.
Section III illustrates the theoretical results using several
types of rhythmic spatiotemporal dynamics exhibited by
the FitzHugh-Nagumo model of excitable media, and
Sec. IV summarizes the results. Appendix A reviews the
conventional phase-reduction theory for low-dimensional
limit cycles described by ODEs, and Appendix B gives
the full derivation of the phase-reduction theory for RD
systems with emphasis on the notion of isochrons.
Appendix C presents phase-sensitivity functions for the
target waves, Appendix D shows nonlinear phase response
of the RD systems to strong perturbations, Appendix E
discusses frequencies of the synchronized patterns, and
Appendix F gives details of Videos 1–6 showing synchro-
nization dynamics of the FitzHugh-Nagumo model.

II. PHASE DESCRIPTION OF
SPATIOTEMPORAL RHYTHMS

In this section, we summarize the essential results of
the proposed phase-reduction theory for RD systems and
apply it to mutual synchronization of a pair of coupled RD
systems. Full derivation of the theory will be given in
Appendix B. See also Appendix A for a review of the
phase-reduction theory for low-dimensional limit-cycle
oscillators described by ODEs.

A. Phase reduction of limit-cycle solutions
in reaction-diffusion systems

We consider weakly perturbed RD systems exhibiting
stable rhythmic dynamics, described by

∂
∂tXðr; tÞ ¼ FðX; rÞ þ D∇2Xþ pðr; tÞ: (1)

Here, the vector field Xðr; tÞ represents the state (e.g.,
concentrations of chemical species) of the RD medium at

point r at time t, FðX; rÞ represents the local reaction
dynamics at r, D∇2X represents the diffusion ofX over the
medium with a matrix D of diffusion constants, and pðr; tÞ
represents weak spatiotemporal perturbations. Explicit
dependence of F on r, such as medium heterogeneity,
may exist. We assume that the RD system (1) without
perturbation (p ¼ 0) exhibits a stable rhythmic dynamics;
i.e., it possesses a stable limit-cycle solution χ∶ X0ðr; tÞ ¼
X0ðr; tþ TÞ of period T ¼ 2π=ω, where ω denotes fre-
quency and that this solution persists and deforms only
slightly even if the system is weakly perturbed (p ≠ 0).
Such a limit cycle includes the circulating pulses on a ring,
oscillating spots, target waves, and rotating spirals that we
will analyze in Sec. III (see Figs. 1, 2, 3, and 4). Note that
the frequency ω of the unperturbed pattern is strictly
constant over space; i.e., every part of the system evolves
consistently with the same ω. The perturbation may slightly
disturb the pattern and shift the overall frequency, but the
whole system should maintain its consistency and not split
into multiple regions with different frequencies.
The purpose of the phase-reduction theory is to derive a

simple closed equation for the phase θ approximately
describing limit-cycle oscillations of Eq. (1) under
weak perturbation (p ≠ 0). As in the ODE case (see
Appendix A), we first introduce a phase θ ¼ ωt
(mod 2π) to a system state X0ðr; tÞ on the limit cycle χ
so that _θðtÞ ¼ ω constantly holds, and we denote the
system state as X0ðr; θÞ using the phase θ. To perform
phase reduction, we also need to assign a phase to a system
state Xðr; tÞ that is not on the limit cycle χ but eventually
converges to χ, since the system state can deviate from χ
because of perturbations. Specifically, we need a functional
θ ¼ ΘfXðr; tÞg that maps Xðr; tÞ in the basin of χ to a
scalar phase θ such that _θðtÞ ¼ ω constantly holds. This
leads to the notion of isochrons [1–5,37,38], i.e., equal-
phase contours of the system state around χ. The notion of
the isochrons is at the core of the conventional phase-
reduction theory for ODEs and should be generalized to RD
systems. It is, however, generally impossible to obtain such
a functional explicitly.
To proceed, we use the assumption that the perturbation

is weak and focus on the vicinity of χ. We make an ansatz
that the phase ΘfXðrÞg of a system state XðrÞ near
X0ðr; θÞ can be linearly approximated, using a certain
function Qðr; θÞ, as

ΘfXðrÞg ¼ θ þ hQðr; θÞ;XðrÞ −X0ðr; θÞi (2)

around χ, where hAðrÞ;BðrÞi ¼ R
AðrÞ · BðrÞdr is the

inner product between two functions. For a system
state XðrÞ ¼ X0ðr; θÞ on χ with phase θ, an identity
ΘfX0ðr; θÞg ¼ θ should hold by the above definition of
the phase. Moreover, for any system state Xðr; tÞ near χ
evolving under Eq. (1) with p ¼ 0, we require that
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θðtÞ ¼ ΘfXðr; tÞg satisfies _θðtÞ ¼ ω constantly within a
linear approximation.
As we will derive in Appendix B, if Qðr; θÞ is a periodic

solution to a generalized adjoint equation

ω
∂
∂θQðr; θÞ ¼ −JðθÞ†Qðr; θÞ − D†∇2Qðr; θÞ (3)

with a normalization condition

�
Qðr; θÞ; ∂X0ðr; θÞ

∂θ
�

¼ 1; (4)

the functional ΘfXðrÞg assumed in Eq. (2) satisfies the
above requirements for the phase, and such a Qðr; θÞ plays
the role of the phase-sensitivity function [1–5] for the
RD system quantifying linear response characteristics of
the system phase to weak perturbations. Here, JðθÞ ¼
J½X0ðr; θÞ� is a Jacobi matrix of F estimated at X ¼
X0ðr; θÞ on χ and † indicates the matrix transpose.
Namely, we can show that the phase θðtÞ ¼ ΘfXðr; tÞg

of the infinite-dimensional RD system (1) approximately
obeys a simple one-dimensional phase equation

_θðtÞ ¼ ωþ hQðr; θÞ;pðr; tÞi; (5)

which is correct up to the lowest order of the perturbation
pðr; tÞ. Thus, once Qðr; θÞ is obtained from Eqs. (3) and
(4), rhythmic dynamics of the RD system subjected to
weak spatiotemporal perturbations, Eq. (1), can easily be
analyzed using Eq. (5). This is the main result of the
present study.
The phase equation (5) also shows that, if a system state

X0ðr; θÞ with phase θ on χ is instantaneously perturbed by
a weak spatial stimulus sðrÞ, the response of the system
phase after relaxation, namely, the phase-response curve
(PRC) [1,5], is given by

RðθÞ ¼ hQðr; θÞ; sðrÞi (6)

within a linear approximation. This PRC RðθÞ can be
measured directly in numerical simulations by applying
impulsive perturbations to the RD system, as we will
illustrate in Sec. III.

B. Mutual synchronization of
spatiotemporal rhythms

As a simple example of the phase-reduction approach, let
us consider synchronization of a pair of weakly coupled
RD systems exhibiting rhythmic dynamics,

∂
∂tX1ðr; tÞ ¼ FðX1; rÞ þ D∇2X1 þGfX1;X2g;
∂
∂tX2ðr; tÞ ¼ FðX2; rÞ þ D∇2X2 þGfX2;X1g; (7)

whereX1;2 represent the system states. We assume local and
linear mutual coupling,GfX;Yg¼K½Yðr;tÞ−Xðr;tÞ�, with
a diagonal matrix K representing the intensity of the weak
mutual coupling. Experimental systems like Eq. (7) have
been realized by coupling a pair of photosensitive Belousov-
Zhabotinsky chemical reactions via video cameras and
projectors [26], and by coupling a pair of electrochemical
oscillators [27].
Denoting the phase variables of the two systems as θ1;2

and considering the coupling termG as weak perturbations,
we can approximate Eq. (7) by a pair of coupled phase
equations,

_θ1ðtÞ ¼ ωþ hQðr; θ1Þ;GfX0ðr; θ1Þ;X0ðr; θ2Þgi;
_θ2ðtÞ ¼ ωþ hQðr; θ2Þ;GfX0ðr; θ2Þ;X0ðr; θ1Þgi; (8)

where X1;2 in G are approximated by X0ðr; θ1;2Þ as the
lowest-order approximation [1,2]. Note that the two
infinite-dimensional RD systems are reduced to just two
one-dimensional phase equations.
The coupled phase equations (8) can be analyzed in the

same way as those for ordinary limit cycles [1–5]. Since
the coupling term G is small, we can apply the averaging
approximation to Eqs. (8), which yields

_θ1ðtÞ ¼ ωþ Γðθ1 − θ2Þ; _θ2ðtÞ ¼ ωþ Γðθ2 − θ1Þ; (9)

where the phase-coupling function Γ is given by

ΓðϕÞ¼ 1

2π

Z
2π

0

hQðr;θþϕÞ;GfX0ðr;θþϕÞ;X0ðr;θÞgidθ:

(10)

By subtraction, the phase difference ϕ ¼ θ1 − θ2 obeys

_ϕðtÞ ¼ ΓðϕÞ − Γð−ϕÞ ¼ ΓaðϕÞ; (11)

where ΓaðϕÞ is a 2π-periodic function. Here, ΓaðϕÞ is
antisymmetric because we consider two identical limit
cycles (rhythmic patterns) with symmetric coupling.
Thus, the phase difference ϕ ¼ θ1 − θ2 between the

two RD systems approximately obeys a quite simple
one-dimensional equation. By examining the zeros of
ΓaðϕÞ where _ϕðtÞ ¼ 0, we can predict the stationary phase
differences at which phase synchronization occurs between
the two limit-cycle orbits of the coupled RD systems under
the phase-reduction approximation. The synchronized state
with a stationary phase difference ϕ� is linearly stable
when dΓaðϕÞ=dϕ < 0 [unstable when dΓaðϕÞ=dϕ > 0] at
ϕ ¼ ϕ�. A pair of stably synchronized RD systems with
the phase difference ϕ� undergoes phase-locked oscilla-
tions with a common frequency ωþ Γðϕ�Þ; i.e., their
frequency shifts from the unperturbed value ω by Γðϕ�Þ.
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For symmetrically coupled identical RD systems, ΓaðϕÞ
always vanishes at ϕ ¼ 0 and at ϕ ¼ �π, so the existence
of in-phase (ϕ ¼ 0) and antiphase (ϕ ¼ �π) synchronized
states is assured.

III. EXAMPLES

In this section, we illustrate the phase-reduction theory
for RD systems by numerical simulations. We analyze
phase-response properties and synchronization dynamics
of circulating pulses on a ring, oscillating spots, target
waves, and rotating spirals of the FitzHugh-Nagumo model
of excitable media (Figs. 1–4). Among these rhythmic
patterns, the circulating pulses and rotating spirals are rigid
and spatially symmetric, so they may, in principle, be

analyzed using the conventional methods [2,25,28–36]. In
contrast, the oscillating spots and target waves are not rigid
and lack translational or rotational symmetry; therefore,
they cannot be treated by the conventional methods that
rely on such assumptions. In any case, the phase reduction
can provide a simple, unified approach to the synchroniza-
tion properties of spatiotemporal rhythms. As we will see,
complex spatiotemporal profiles of the rhythmic patterns
can lead to interesting synchronization dynamics.

A. The FitzHugh-Nagumo model

The FitzHugh-Nagumo (FHN) reaction-diffusion model
is a classical model of neural spike transmission, whose
dynamics is described by
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FIG. 1. Circulating pulses. The system is a 1D ring of length L ¼ 300 with periodic boundary conditions. The system parameters are
α ¼ 0, τ−1 ¼ 0.018, γ ¼ 1, κ ¼ 1, and δ ¼ 0.02. With these values, the pulse exhibits a wavy tail [19]. The oscillation period (time
needed for the pulse to go around the ring) is T ≈ 551.8. (a) Snapshots of the stable circulating pulse with a wavy tail,
X0ðx; θÞ ¼ ½uðx; θÞ; vðx; θÞ�, and the corresponding phase-sensitivity function, Qðx; θÞ ¼ ½Quðx; θÞ; Qvðx; θÞ�, for θ ¼ 0. (b)
Phase-response curves RðθÞ of the circulating pulse normalized by the stimulus intensity ε. Either bell-shaped
[sðxÞ ¼ ε expf−ðx − 150Þ2=90g] or cosine [sðxÞ ¼ ε cosð4πx=300Þ] perturbation is given to the activator (u) component. Results
obtained by direct numerical simulations with two different values of ε are compared with the theory, RðθÞ ¼ hQðx; θÞ; sðxÞi, where the
inner product is taken over the 1D ring (0 ≤ x ≤ L). (c) Evolution of the phase difference ϕ ¼ θ1 − θ2 between two systems coupled
through the u component with the coupling intensity matrix K ¼ diagðk; 0Þ with k ¼ 0.001 and the antisymmetric part of the phase-
coupling function ΓaðϕÞ (rescaled by the coupling intensity k). Different blue lines show the evolution of ϕ for different initial
conditions. The two pulses show multimodal phase locking. (d) Snapshots of phase-locked pulses with four different stable phase
differences. Graphs (A–D) correspond to the stable phase differences shown in (c).

HIROYA NAKAO, TATSUO YANAGITA, AND YOJI KAWAMURA PHYS. REV. X 4, 021032 (2014)

021032-4



X ¼
�
u

v

�
; F ¼

�
uðu − αÞð1 − uÞ − v

τ−1ðu − γvÞ

�
;

D ¼
�
κ 0

0 δ

�
; (12)

where u ¼ uðr; tÞ and v ¼ vðr; tÞ are activator and
inhibitor variables, respectively. By appropriately choosing
the parameters α, τ, γ, and the diffusion constants κ and δ,
the FHN model can exhibit various types of rhythmic
spatiotemporal dynamics [19–22], such as the circulating

pulses on a ring (Fig. 1), oscillating spots (Fig. 2), target
waves (Fig. 3), and rotating spirals (Fig. 4).
In numerical simulations, the size of the system is

L ¼ 80–600 for 1D cases, and it is discretized using
Δx ¼ 0.5–1.0 spatial grids. For 2D cases, the system size
is Lx × Ly ¼ 80 × 80–120 × 120, and it is discretized with
Δx ¼ Δy ¼ 0.5–1.0 spatial grids. The explicit Euler
method with a time step Δt ¼ 0.01–0.05 is used for time
integration.
To numerically obtain the phase-sensitivity function

Qðr; θÞ, the adjoint equation (3) is integrated backward
in time [5]. Namely, one period of the limit-cycle
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FIG. 2. Oscillating spots. The system is a 1D interval of length L ¼ 80 or L ¼ 120with no-flux boundary conditions. The parameter α
is space dependent; i.e., αðxÞ ¼ α0 þ ðα1 − α0Þð2x=L − 1Þ2 with α0 ¼ −1.1 and α1 ¼ −1.6 so that α is the largest at the center
(x ¼ L=2) and the smallest at the boundaries (x ¼ 0, L). Other parameter values are τ−1 ¼ 0.03, γ ¼ 2.0, κ ¼ 1, and δ ¼ 2.5. With these
conditions, an oscillating spot constrained at the center can be generated. The oscillation period is T ¼ 194.8 (L ¼ 80) or T ¼ 204.0
(L ¼ 120). (a) Snapshots of the oscillating spot solutionX0ðxÞ ¼ ½uðxÞ; vðxÞ� and the corresponding phase-sensitivity functionQðxÞ ¼
½QuðxÞ; QvðxÞ� for θ ¼ 0. (b) Evolution of X0ðx; θÞ and Qðx; θÞ during 0 ≤ θ < 2π. (c) Phase-response curves RðθÞ of the oscillating
spot normalized by the stimulus intensity ε. Perturbation sðxÞ is either bell-shaped [sðxÞ ¼ ε expf−4ðx − L=2Þ2=Lg] or sinusoidal
[sðxÞ ¼ ε cosð4πx=LÞ] and is given to the activator (u) component. Results obtained by direct numerical simulations with two different
values of ε are compared with the theory, RðθÞ ¼ hQðx; θÞ; sðxÞi, where the inner product is taken over the 1D interval (0 ≤ x ≤ L).
(d) Evolution of phase differences between two systems coupled through the u component with the intensity matrix K ¼ diagðk; 0Þ with
k ¼ 10−4, showing in-phase synchronization for L ¼ 80 (A) and antiphase synchronization for L ¼ 120 (B). Different lines show the
evolution of ϕ for different initial conditions. The antisymmetric part of the phase-coupling function ΓaðϕÞ (rescaled by the coupling
intensity k) is shown for comparison. (e) Snapshots of activator patterns uðxÞ of both systems in the in-phase (A) and antiphase (B)
synchronized states.
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FIG. 3. Target waves. The system is a 2D square of side L ¼ 100with no-flux boundary conditions. To create a pacemaker region, the
parameter α is assumed to possess localized circular heterogeneity, i.e., αðx; yÞ ¼ α0 þ ðα1 − α0Þ expð−r4=r40Þ, where r ¼ ½ðx − x0Þ2 þ
ðy − y0Þ2�1=2 is the distance from the pacemaker center at ðx0; y0Þ and r0 is the radius of the pacemaker region, so αðx; yÞ → α1 as r → 0
and αðx; yÞ → α0 as r → ∞. The parameters are α0 ¼ 0.1, α1 ¼ −0.1, r0 ¼ 10, and ðx0; y0Þ ¼ ð80; 50Þ. With these values, the system is
self-oscillatory near the pacemaker center and is excitable otherwise. Other parameters are τ−1 ¼ 0.005, γ ¼ 2.5, κ ¼ 0.15, and δ ¼ 0.
The temporal oscillation period is T ¼ 205.4. (a) Target-wave solution X0ðx; yÞ ¼ ½uðx; yÞ; vðx; yÞ� and the corresponding phase-
sensitivity function Qðx; yÞ ¼ ½Quðx; yÞ; Qvðx; yÞ� at θ ¼ 0 (see Appendix C for other values of θ). (b) Phase-response curves RðθÞ of
the target wave normalized by the stimulus intensity ε. Sinusoidal perturbation sðx; yÞ ¼ ε cosð4πx=100Þ cosð4πy=100Þ is given either to
the activator (u) or inhibitor (v) component. Results obtained by direct numerical simulations with two different values of ε are
compared with the theory, RðθÞ ¼ hQðx; y; θÞ; sðx; yÞi, where the inner product is taken over the 2D square (0 ≤ x, y ≤ L).
(c) Evolution of phase differences between two systems coupled through the u component with the intensity matrix
K ¼ diagðk ¼ 5 × 10−4; 0Þ, compared with the antisymmetric part of the phase-coupling function ΓaðϕÞ (rescaled by the coupling
intensity k). Different blue lines show the evolution of ϕ for different initial conditions. Both in-phase (A) and antiphase (B)
synchronization can occur, depending on the initial conditions. (d) Evolution of the activator u measured at the center ½ðx; yÞ ¼
ðL=2; L=2Þ� of systems 1 and 2 in the in-phase (A) and antiphase (B) synchronized states. The solid line corresponds to system 1, and the
dashed line corresponds to system 2. (e) Snapshots of the activator patterns uðx; yÞ of both systems in the in-phase (A) and antiphase (B)
synchronized states.
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oscillation is recorded by integrating the original RD
system forward with sufficiently small time grids; then,
the adjoint equation is spatially discretized and numerically
integrated backward using the recorded time sequence of
the limit cycle, with occasional normalization of the

solution so that Eq. (4) is satisfied. Owing to the assumed
stability of the limit-cycle solution, all modes other than the
zero mode corresponding to temporal translational invari-
ance eventually decay (the Floquet theorem), and the
resultant solution gives the phase-sensitivity function.

FIG. 4. Rotating spirals. The system is a 2D square of side L ¼ 120with no-flux boundary conditions. To pin the spiral at the center, a
localized circular heterogeneity of radius r0 ¼ 4 is introduced to the parameter αðx; yÞ as αðx; yÞ ¼ α0 þ ðα1 − α0Þ expð−r4=r40Þ, where
r ¼ ½ðx − L=2Þ2 þ ðy − L=2Þ2�1=2 is a distance from the center of the system. We assume α0 ¼ 0.05 and α1 ¼ 0.5 so that excitability is
the highest at the center. Other parameters are fixed at τ−1 ¼ 0.005, γ ¼ 2.5, κ ¼ 0.15, and δ ¼ 0. With these parameters, the oscillation
period of the spiral is T ¼ 217.37. (a) Spiral solution X0ðx; y; θÞ ¼ ½uðx; yÞ; vðx; yÞ� and the corresponding phase-sensitivity functions
Qðx; y; θÞ ¼ ½Quðx; yÞ; Qvðx; yÞ� at θ ¼ 0. (b) Phase-response curves RðθÞ of the spiral normalized by the stimulus intensity ε. The
checkerboard-like spatial perturbation is given either to the activator (u) or the inhibitor (v) component, where sðx; yÞ ¼ ε for x, y > L=2
or x, y < L=2, and sðx; yÞ ¼ 0 otherwise. Results obtained by direct numerical simulations with two different values of ε are compared
with the theory, RðθÞ ¼ hQðx; y; θÞ; sðx; yÞi, where the inner product is taken over the 2D square (0 ≤ x, y ≤ L). (c) Evolution of phase
differences between two systems coupled through the u component with the coupling intensity matrix K ¼ diagðk ¼ 2 × 10−4; 0Þ,
compared with the antisymmetric part of the phase-reduction function ΓaðϕÞ (rescaled by the coupling intensity k). Different blue lines
show the evolution of ϕ for different initial conditions. Both in-phase synchronization (A) and antiphase synchronization (B) can occur,
depending on the initial conditions. The solid line corresponds to system 1, and the dashed line corresponds to system 2. (d) Snapshots of
the in-phase and antiphase synchronized states.
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B. Circulating pulses

Our first example is a circulating-pulse solution of the
FHN model with a wavy tail on a 1D ring of length L [39].
Since the pattern is rigid and the system is translationally
symmetric, the phase θ can simply be identified as the
pulse location in this case. Figure 1(a) shows snapshots of
the limit-cycle solution X0ðx; θÞ ¼ ½uðx; θÞ; vðx; θÞ� and
the corresponding phase-sensitivity function Qðx; θÞ ¼
½Quðx; θÞ; Qvðx; θÞ� for θ ¼ 0, both propagating to the
right. Results for other values of θ can simply be obtained
by translating Fig. 1(a) in the x direction. An external
stimulus applied to the region where Qu;vðx; θÞ > 0 will
advance the phase of the limit-cycle solution X0ðx; θÞ (i.e.,
it pushes the pulse forward to the right), while a stimulus
given to the region where Qu;vðx; θÞ < 0 will retard the
phase of the limit-cycle solution (i.e., it pulls the pulse
backward to the left). It is observed thatQðx; θÞ is localized
near the pulse, indicating that perturbations given only in
this region can affect the phase of the pulse. It is also seen
thatQðx; θÞ has a wavy front, reflecting the wavy tail of the
pulse. This counterintuitive result can be explained as
follows. The system exhibits localized damped oscillations
when it is perturbed at some spatial point. If the pulse
propagates into such a region, the pulse location (i.e., the
system phase) is either advanced or retarded depending
on the timing of the collision, yielding the wavy front
of Qðx; θÞ.
Figure 1(b) compares the PRC RðθÞ of the system to the

weak spatial stimulus sðxÞ obtained by direct numerical
simulations (DNS) with the theoretical results
RðθÞ ¼ hQðx; θÞ; sðxÞi, where Qðx; θÞ is obtained from
the adjoint equation. The stimulus is either a bell shape
localized at the center or a cosine curve, and it is given only
to the activator component for the sake of simplicity. In
each figure, the PRC RðθÞ is normalized by the stimulus
intensity ε as RðθÞ=ε so that the numerical data fall on the
theoretical curve when the linearity assumption Eq. (6) is
satisfied [40]. Good agreement is obtained when the
intensity ε of the stimulus is sufficiently small, which
confirms the validity of the linearity assumption for a weak
stimulus. In the case of the narrowly localized bell-shaped
stimulus, the resulting PRC closely resembles Quðx; θÞ.
Indeed, if the stimulus is assumed to be a strictly localized δ
function (though it cannot be realized in real experiments),
RðθÞ coincides with Quðx; θÞ from Eq. (6). When the
stimulus intensity ε is further increased, nonlinearity in the
phase response becomes non-negligible and the present
linear theory becomes worse. Eventually, the circulating
pulse itself will be destroyed by the stimulus [21]. See
Appendix D for more details.
Figure 1(c) shows the synchronization dynamics of the

two RD systems, i.e., the evolution of the phase difference
ϕ ¼ θ1 − θ2 from various initial conditions obtained by
the DNS, and the theoretical function ΓaðϕÞ. Reflecting the
wavy shapes of X0 and Q, ΓaðϕÞ is also wavy with many

zeros, which implies the coexistence of multiple stable
phase-locking points for the two coupled circulating pulses.
This is confirmed by DNS, which shows that the final phase
differences are in good agreement with the zero-crossing
points of ΓaðϕÞ with negative dΓaðϕÞ=dϕ. Figure 1(d)
shows several pairs of stably phase-locked pulses (i.e., pairs
of pulses stably circulating around the ring with fixed phase
differences) obtained by evolving the system from four
different initial conditions. The two pulses synchronize
where their wavy tails match, yielding multiple stable phase
differences as predicted by the phase-reduction analysis.
As explained in Sec. II B, when the two pulses are phase
locked, their frequency may shift from that of a single
unperturbed pulse. See Appendix E for comparison of the
numerical data with the theory. Multimodal phase locking
similar to Figs. 1(c) and 1(d) is also observed in complex
oscillations of delay-differential systems [41].

C. Oscillating spots

Our second example is an oscillating spot solution of the
1D FHN system of length L with no-flux boundaries [20].
To pin the spot at the center, the parameter α of the model is
assumed to be spatially heterogeneous; namely, the excita-
bility of the system is the largest at the center and the
smallest at the boundaries. Note that the pattern is not rigid
and the system lacks spatial symmetry. Figure 2(a) shows
snapshots of the limit-cycle solution X0ðx; θÞ and the
phase-sensitivity function Qðx; θÞ for θ ¼ 0. The activator
component of Qðx; θÞ is sharply localized at both fronts of
the spot; namely, the phase θ of the system is sensitive only
to perturbations near the fronts. Figure 2(b) showsX0ðx; θÞ
and corresponding Qðx; θÞ for one oscillation period
(0 ≤ θ < 2π). Perturbations given to the pulse fronts result
in an advance or a delay in phase, depending on the timing,
i.e., whether the spot is expanding or shrinking. The
inhibitor component of Qðx; θÞ also reflects the oscillation
of the spot. Figure 2(c) shows the PRC RðθÞ to the weak
stimulus sðxÞ, which is either a bell shape or a cosine curve
and is only applied to the activator. There is good agree-
ment between the results of numerical simulations and
theory. As in the previous case, a stronger stimulus yields
nonlinear phase response or leads to collapse of the
oscillating spot. See Appendix D for more details.
The synchronization properties of a pair of oscillating

spots coupled through the activator component are shown
in Fig. 2(d), where the function ΓaðϕÞ and evolution of
the phase difference ϕ are plotted. For comparison, two
different system sizes, L ¼ 80 and L ¼ 120, are used.
Since the parameter α is spatially heterogeneous, the shape
and oscillation period of the spot vary with L. When
L ¼ 80, in-phase synchronization (ϕ ¼ 0) is linearly stable
because dΓaðϕ ¼ 0Þ=dϕ < 0. In contrast, when L ¼ 120,
in-phase synchronization is unstable and antiphase syn-
chronization (ϕ ¼ �π) becomes stable. This prediction is
confirmed by numerical simulations with various initial
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phase differences. Typical snapshots of the synchronized
patterns are shown in Fig. 2(e). See Appendix E for the
numerical data of the frequency shift, and Videos 1 and 2
for the synchronization dynamics (Appendix F).

D. Target waves

As the third example, we consider a target-wave solution
[1,2,18] of the 2D FHN model on a square of side L with
no-flux boundaries. A circular pacemaker region is created
by assuming the parameter α to be heterogeneous. The
system is rotationally symmetric around the pacemaker
region in this case, but the target pattern is not rigid; the
phase should be associated with the temporal dynamics of
the pattern.
Figure 3(a) shows the limit-cycle solution X0ðx; y; θÞ

and the corresponding phase-sensitivity functionQðx; y; θÞ
for θ ¼ 0. As θ increases, X0ðx; y; θÞ undergoes oscilla-
tions corresponding to the emission of concentric target
waves from the pacemaker, and Qðx; y; θÞ oscillates
accordingly (see Appendix C). Reflecting the fact that
the pacemaker dominates overall rhythms of the system,
Qðx; y; θÞ is localized at the pacemaker. Figure 3(b) shows
the PRC RðθÞ obtained by applying a weak cosine spatial
stimulus sðx; yÞ to either the activator or the inhibitor
component. The numerical results are in good agreement
with the theory. See Appendix D for nonlinear PRCs to
stronger stimuli.
Figure 3(c) shows synchronization between two target

waves. Here, we consider counterpropagating target waves;
i.e., one of the RD systems is inverted in the x direction, as
shown in Fig. 3(e). The function ΓaðϕÞ has five zeros, with
the in-phase (ϕ ¼ 0) and antiphase (ϕ ¼ �π) synchronized
states both being stable. Therefore, depending on the initial
conditions, the two target waves can exhibit both types of
synchronization, as confirmed by numerical simulations.
Figure 3(d) shows time sequences of the activator at the
center of the two systems corresponding to the in-phase and
antiphase synchronized states, and Fig. 3(e) shows the
corresponding snapshots. See Appendix E for the numeri-
cal data of the frequency shift, and Videos 3 and 4 for the
synchronization dynamics (Appendix F).

E. Rotating spirals

Our final example is a rotating-spiral solution
[1,2,17,18,26] of the FHN model on a 2D square of side
L with no-flux boundaries. Synchronization between a pair
of rotating spirals was experimentally studied in Ref. [26].
Here, to pin the core of the spiral at the center of the system,
circular heterogeneity in the parameter α is introduced. The
spiral rigidly rotates around this pinning region without
changing its shape.
Figure 4(a) shows snapshots of the spiral solution

X0ðx; y; θÞ and the corresponding phase-sensitivity func-
tion Qðx; y; θÞ at θ ¼ 0. Both rotate in the clockwise
direction as θ increases. Since the system is symmetric

with respect to spatial rotation around the center and since
the pattern is rigid, the phase θ simply corresponds to the
rotation angle, and the results for other values of θ can be
obtained by rotating Fig. 4(a). As in the other cases,
Qðx; y; θÞ is strongly localized near the core of the spiral,
indicating that the spiral tip dominates the overall phase
of the system; perturbations given only to this region can
affect the overall system phase. Figure 4(b) compares
the PRCs obtained by DNS with the theory, RðθÞ ¼
hQðx; y; θÞ; sðx; yÞi, to a checkerboard-like stimulus
sðx; yÞ applied either to the activator or the inhibitor,
showing good agreement. See Appendix D for the non-
linear phase response to stronger stimuli.
Figure 4(c) shows the synchronization process between

two spirals. As expected from the function ΓaðϕÞ with five
zeros, the two spirals can exhibit either in-phase (ϕ ¼ 0) or
antiphase (ϕ ¼ �π) synchronization, as determined by the
initial conditions. Typical time sequences of the activator
component measured at x ¼ L=4, y ¼ L=2 in the in-phase
and antiphase synchronized states are shown in Fig. 4(d),
and typical snapshots of the synchronized spirals are shown
in Fig. 4(e). See Appendix E for the numerical data of the
frequency shift and Videos 5 and 6 for the synchronization
dynamics (Appendix F).

IV. CONCLUDING REMARKS

We developed a phase-reduction theory for limit-cycle
solutions of infinite-dimensional RD systems and illus-
trated its validity by analyzing mutual synchronization of a
pair of RD systems exhibiting rhythmic dynamics. Our
theory does not assume rigidity and spatial symmetry;
therefore, it is generally applicable to a wide class of
rhythmic spatiotemporal dynamics in RD systems and will
be a basis for controlling and designing spatiotemporal
rhythms in various RD systems. Though we analyzed only
a pair of coupled RD systems, the theory can readily be
applied, for example, to the analysis of phase locking to
periodic external stimuli and noise-induced synchroniza-
tion [1–3,5,6,11–13,42–44] of spatiotemporal rhythms.
As assumed in Sec. II, the frequency of the pattern

should be constant over the space, and the whole system
should maintain its consistency even if disturbed by
perturbations. Under this condition, the present theory
can also treat the effect of internal coupling within the
system, e.g., nonlocal feedback coupling among distant
regions of the same RD medium. When the perturbation
comes from the RD system itself, the system would
be described by ∂Xðr; tÞ=∂t ¼ FðX; rÞ þD∇2Xþ
pfXðr; t − t0Þg, where pfXðr; t − t0Þg represents some
weak feedback functional of the system state Xðr; t − t0Þ
at time t − t0 (t0 ≥ 0 is a delay time). Then, using the
phase-sensitivity function Qðr; θÞ, the lowest-order
approximate phase equation can be written down as
_θðtÞ ¼ ωþ hQðr; θðtÞÞ;pfX0½r; θðt − t0Þ�gi. Note that
the feedback term should be sufficiently small so that
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the system does not split into multiple regions with
different frequencies.
In Figs. 1–4,we notice that the phase-sensitivity functions

Qðr; θÞ of the rhythmic patterns are localized in space. Such
localization tends to occur near dynamically important
structures of each pattern, i.e., near the wavefronts of the
circulating pulse and oscillating spot (Figs. 1 and 2), and
around the cores of the target wave and rotating spiral
(Figs. 3 and 4). This is physically plausible because these
regions control the overall dynamics of the whole patterns.
In this sense, Qðr; θÞ characterizes dynamically important
regions of the system. Of course, for other rhythmic patterns
without such structures, e.g., for smooth nonlinear waves in
spatially uniform oscillatory media, localization of the
phase-sensitivity function may not be apparent.
As we explained in Sec. I, reduction of RD systems

exhibiting rigidly traveling pulses and rotating spirals to
low-dimensional phase equations has been considered in
many studies [2,24,25,28–36]. They can be considered
phase-reduction theories for RD systems from our present
viewpoint, though the definition of the “phase” as the
oscillation phase may not be explicit. As we stressed, the
merit of the present study is that it clearly gives a systematic
phase-reduction theory applicable to general reaction-
diffusion systems exhibiting limit-cycle oscillations with-
out assuming any spatial symmetry or rigidity.
Phase-reduction theories for infinite-dimensional

dynamical systems undergoing stable periodic oscillations
have also been developed in several other contexts. For
example, we derived macroscopic phase equations for
systems of globally coupled oscillators and excitable units
exhibiting collective rhythms in our recent works [45,46].
The theory can be considered a phase-reduction theory for a
nonlinear Fokker-Planck equation describing the one-body
probability density of the dynamical units in the continuum
limit. Recently, we have also succeeded in deriving phase
equations for steadily oscillating convection in a Hele-
Shaw cell [47,48] described by fluid equations from the
viewpoint of phase-reduction theory. Also, the phase-
reduction theory for delay-induced oscillations recently
developed by Novičenko and Pyragas [49] and by us [41] is
also for infinite-dimensional dynamical systems because
delay-differential equations have infinite-dimensional state
space. In this case, an appropriate inner product (bilinear
form) for delay-differential equations, which is different
from the L2 norm used for the partial-differential equations,
should be used. These studies imply that it is generally
possible to extend the phase-reduction theory to various
infinite-dimensional dynamical systems undergoing limit-
cycle oscillations, which will give us a simple unified way
to analyze and control their rhythmic dynamics.
In the present study, we consider only the case in which

the RD system exhibits a stable limit-cycle oscillation with
a single phase variable. Generally, a reaction-diffusion
system can also possess other phase variables associated

with other neutrally stable directions. For example, rigidly
rotating spirals without a pinning force in 2D extended
media generally have three phases, i.e., one rotation phase
and two spatial phases (the xy coordinates of the core). If
the spiral core meanders along a closed circular trajectory,
the system possesses a stable 2-torus with two phase
variables. Phase equations for such spirals have been
derived in several studies [35,36] under the rigidity
assumption of the spiral patterns. Because phase-reduction
theories for quasiperiodic oscillations have already been
developed [50,51,55] for low-dimensional limit-torus
oscillators, we will be able to develop similar theories
for infinite-dimensional dynamical systems exhibiting
limit-torus oscillations without assuming rigidity or spatial
symmetry. As an attempt in this direction, we recently
analyzed oscillatory Hele-Shaw convection with transla-
tional symmetry, which possesses two phase variables [52].
It should also be possible to develop a more general phase-
reduction theory that is applicable to RD systems possess-
ing stable limit-torus solutions.
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APPENDIX A: PHASE REDUCTION OF
ORDINARY LIMIT-CYCLE OSCILLATORS

In this appendix, we review the classical phase-reduction
theory for ordinary limit-cycle oscillators described by
finite-dimensional ODEs. See Refs. [1–5] for details of
the theory and applications to various synchronization
phenomena in systems of coupled oscillators.

1. Geometric formulation of the phase-reduction theory

We consider a limit-cycle oscillator described by the
ODE

_XðtÞ ¼ F½XðtÞ�; (A1)

where XðtÞ is a d ≥ 2-dimensional vector representing the
oscillator state at time t and F determines its dynamics.
Suppose that Eq. (A1) has a stable limit-cycle solution of
period T,

χ∶ X0ðtÞ ¼ X0ðtþ TÞ; (A2)

which is denoted as χ. We introduce a phase θðtÞ ∈ ½0; 2πÞ
to the stateX0ðtÞ on χ in such a way that θðtÞ increases with
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a constant frequency ω ¼ 2π=T as X0ðtÞ evolves along χ
under Eq. (A1). This can be performed by choosing a
certain state X0ðt ¼ 0Þ on χ as the origin of the phase, i.e.,
θ ¼ 0, and assigning a phase value

θ ¼ ωtðmod 2πÞ (A3)

to the oscillator state X0ðtÞ on χ (t ≥ 0) evolving under
Eq. (A1) from the phase origin X0ðt ¼ 0Þ. Namely, we
identify the oscillator phase with the time multiplied by the
frequency. We will denote the oscillator state on χ with the
phase value θ as X0ðθÞ henceforth.
The above definition of the phase on χ can be extended

to the whole basin of χ by assigning the same phase value
θðtÞ to the set of oscillator states fXðtÞg that asymptotically
approach the oscillator state X0½θðtÞ� on χ under Eq. (A1),
i.e.,

lim
t→þ∞

jXðtÞ −X0½θðtÞ�j ¼ 0; (A4)

where j � � � j represents the ordinary vector norm. This
defines a phase function

θ ¼ ΘðXÞ ∈ ½0; 2πÞ (A5)

that maps a given oscillator state X in the basin of χ to a
scalar phase θ. It is clear that the phase θðtÞ ¼ Θ½XðtÞ� of
the state XðtÞ evolving under Eq. (A1) obeys a simple
phase equation,

_θðtÞ ¼ ω; (A6)

not only on the limit-cycle solution χ but also in the whole
basin of χ. Using the chain rule for the derivatives, it can be
shown that

_θðtÞ ¼ d
dt

Θ½XðtÞ� ¼ ∂ΘðXÞ
∂X

����
X¼XðtÞ

·
dXðtÞ
dt

¼ ∂ΘðXÞ
∂X

����
X¼XðtÞ

· F½XðtÞ� ¼ ω; (A7)

where ∂ΘðXÞ=∂XjX¼XðtÞ is the gradient of the phase
function ΘðXÞ at X ¼ XðtÞ. Thus, the phase function
ΘðXÞ should satisfy

∂ΘðXÞ
∂X · FðXÞ ¼ ω (A8)

in the basin of χ. The set of oscillator states sharing the
same phase value is called the isochron and is the
fundamental concept in the analysis of limit-cycle oscil-
lators [1–5,37,38]. The whole basin of χ is foliated by such
isochrons. See Fig. 5(a) for a schematic illustration of the
isochrons.
Now we consider the case in which the limit-cycle

oscillator is weakly perturbed as

_XðtÞ ¼ F½XðtÞ� þ p½XðtÞ; t�; (A9)

where the perturbation pðX; tÞ, generally a function of the
oscillator state X and time t, is assumed to be sufficiently
weak so that the original limit-cycle solution χ is only
slightly deformed. From Eq. (A7), the phase θðtÞ ¼
Θ½XðtÞ� of the perturbed oscillator obeys

_θðtÞ ¼ ∂ΘðXÞ
∂X

����
X¼XðtÞ

· fF½XðtÞ� þ p½XðtÞ; t�g

¼ ωþ ∂ΘðXÞ
∂X

����
X¼XðtÞ

· p½XðtÞ; t�: (A10)

(a) (b)

FIG. 5. (a) Isochrons of a limit cycle. The same phase value is assigned to the oscillator states that asymptotically converge to the same
state on the limit cycle. (b) Linear approximation of the phase function near the limit cycle.
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However, this is not a closed equation for θðtÞ because the
gradient ∂ΘðXÞ=∂XjX¼XðtÞ and the perturbation p½XðtÞ; t�
still depend on XðtÞ. To obtain a closed equation for θðtÞ,
XðtÞ in these terms is replaced by X0½θðtÞ� at the lowest-
order approximation, assuming that the perturbation
p½XðtÞ; t� is sufficiently weak so that XðtÞ does not
significantly deviate from X0½θðtÞ� on χ. This yields an
approximate, closed phase equation for θðtÞ,

_θðtÞ≃ ωþ ∂ΘðXÞ
∂X

����
X¼X0ðθðtÞÞ

· pðX0½θðtÞ�; tÞ; (A11)

which is correct up to OðjpjÞ. Thus, by denoting pðθ; tÞ ¼
p½X0ðθÞ; t� and introducing a function

ZðθÞ ¼ ∂ΘðXÞ
∂X

����
X¼X0ðθÞ

; (A12)

the d-dimensional ODE (A9) describing a perturbed limit
cycle can be reduced to a simple one-dimensional phase
equation

_θðtÞ ¼ ωþ Z½θðtÞ� · p½θðtÞ; t� (A13)

at the lowest order in the perturbation.
The key quantity for this approximation is the phase-

sensitivity function ZðθÞ defined in Eq. (A12), which is
the gradient of the isochron estimated atX ¼ X0ðθÞ on the
limit-cycle solution χ. The function ZðθÞ quantifies the
linear phase-response property of the oscillator state X0ðθÞ
with the phase θ on χ to infinitesimal perturbations. If
X0ðθÞ is instantaneously perturbed by a weak stimulus s,
the resulting phase response is given by

RðθÞ ¼ ZðθÞ · s (A14)

under a linear approximation. This RðθÞ is called the phase-
response curve (PRC) of the limit-cycle oscillator described
by Eq. (A1). The PRC can be obtained by applying
impulsive perturbations to a limit-cycle oscillator and
has been measured in various experimental systems [1].

2. Linear theory around the limit-cycle solution

Though we have developed a formal geometric theory by
assuming the existence of the phase function ΘðXÞ, it is
generally impossible to obtain ΘðXÞ explicitly, except for a
few simple models of limit-cycle oscillators. However, to
obtain the lowest-order phase equation (A12) for weak
perturbations, only the phase-sensitivity function ZðθÞ is
actually necessary. As we show below, the function ZðθÞ
can be obtained as the 2π-periodic solution to the following
adjoint equation [3,5]:

ω
dZðθÞ
dθ

¼ −JðθÞ†ZðθÞ; (A15)

with the constraint ZðθÞ · F½X0ðθÞ� ¼ ω, or equivalently,

ZðθÞ · d
dθ

X0ðθÞ ¼ 1; (A16)

for 0 ≤ θ < 2π, where JðθÞ ¼ J½X0ðθÞ� is the Jacobi matrix
of FðXÞ at X ¼ X0ðθÞ on χ and † indicates the matrix
transpose.
The adjoint equation (A15) and the normalization con-

dition (A16) can be derived in several different ways. Here,
we use a simple argument by Brown, Moehlis, and Holmes
[4] with an emphasis on the linear approximation of the
isochrons near the limit cycle [see Eq. (A18) below]. We
use the same idea to develop a phase-reduction theory for
the limit-cycle solutions of reaction-diffusion systems in
Appendix B. See Fig. 5(b) for a schematic illustration.
We first note that, when jX −X0ðθÞj is sufficiently

small, the phase function ΘðXÞ for the ODE can be
expanded in a Taylor series around X0ðθÞ as

ΘðXÞ ¼ Θ½X0ðθÞ þX −X0ðθÞ�

¼ Θ½X0ðθÞ� þ
∂ΘðXÞ
∂X

����
X¼X0ðθÞ

· ½X −X0ðθÞ�

þO½jX −X0ðθÞj2�
¼ θ þ ZðθÞ · ½X −X0ðθÞ� þO½jX −X0ðθÞj2�

(A17)

using the phase-sensitivity function ZðθÞ in Eq. (A12).
Therefore, if the oscillator state X is close to the oscillator
state X0ðθÞ with the phase θ on the limit-cycle solution χ,
ΘðXÞ can be linearly approximated as

ΘðXÞ≃ θ þ ZðθÞ · ½X −X0ðθÞ�: (A18)

Suppose we have an initial state X0ðt ¼ 0Þ ¼ Xðθ ¼ 0Þ
on χ, and a slightly perturbed initial state

Xðt ¼ 0Þ ¼ X0ðθ ¼ 0Þ þ yðt ¼ 0Þ (A19)

near X0ðθ ¼ 0Þ, where yðt ¼ 0Þ is a small perturbation
given to X0ðθ ¼ 0Þ. We evolve these two states without
applying further perturbations. Then, from Eq. (A1), the
linearized equation for the small perturbation yðtÞ ¼
XðtÞ −X0½θðtÞ� is given by

d
dt

yðtÞ ¼ J½θðtÞ�yðtÞ; (A20)

where J½θðtÞ� ¼ JðX0½θðtÞ�Þ ¼ DFðX0½θðtÞ�Þ is the Jacobi
matrix of FðXÞ at X ¼ X0ðθÞ on χ. From Eq. (A18), the
phase of the unperturbed state is given by θðtÞ ¼
ΘðX0½θðtÞ�Þ ¼ ωt and that of the perturbed state can be
expressed as
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θ0ðtÞ ¼ Θ½XðtÞ�
¼ ΘðX0½θðtÞ� þ yðtÞÞ≃ θðtÞ þZ½θðtÞ� · yðtÞ (A21)

under the linear approximation. Note here that θ0ðtÞ
should also increase with a constant frequency ω, i.e.,
dθ0ðtÞ=dt ¼ ω within the linear approximation, because no
perturbation is given after t ¼ 0. Thus, the following
equation should hold for yðtÞ evolving from arbitrary
yðt ¼ 0Þ:

0 ¼ d
dt

fθ0ðtÞ − θðtÞg ¼ d
dt

fZ½θðtÞ� · yðtÞg

¼ dZ½θðtÞ�
dt

· yðtÞ þ Z½θðtÞ� · dyðtÞ
dt

¼ dZ½θðtÞ�
dt

· yðtÞ þ Z½θðtÞ� · J½θðtÞ�yðtÞ

¼
�
d
dt

Z½θðtÞ� þ J½θðtÞ�†Z½θðtÞ�
�
· yðtÞ: (A22)

Therefore, Z½θðtÞ� should satisfy the following adjoint
equation:

d
dt

Z½θðtÞ� ¼ −J½θðtÞ�†ZðθðtÞÞ; (A23)

which is equivalent to Eq. (A15) by the relation d=dt ¼
ωd=dθ (note that θ ¼ ωt). To obtain the normalization
condition Eq. (A16), we differentiate the identity θðtÞ ¼
ΘðX0½θðtÞ�Þ ¼ ωt by t, which yields

ω ¼ d
dt

θðtÞ ¼ ∂ΘðXÞ
∂X

����
X¼X0½θðtÞ�

·
d
dt

X0½θðtÞ�

¼ Z½θðtÞ� · FðX0½θðtÞ�Þ: (A24)

This gives the normalization condition Eq. (A16), again by
the relation d=dt ¼ ωd=dθ.
Thus, the function ZðθÞ can be obtained by solving the

adjoint equation (A15) under the normalization condition
Eq. (A16), and the phase function near χ is given by
Eq. (A18) within a linear approximation. It can also be
shown that ZðθÞ is the unique solution to Eq. (A15) by
using the Floquet theorem characterizing the linear stability
of the limit cycle, since ZðθÞ is essentially the Floquet
eigenvector with the zero Floquet exponent [2–5]. In actual
numerical calculations, it is useful to integrate Eq. (A15)
backward in time to avoid numerical overflow, with occa-
sional normalization using Eq. (A16) [5]. Then, by virtue of
the Floquet theorem, only the functional component
corresponding to ZðθÞ remains.
Once we obtain the frequency ω and the phase-

sensitivity function ZðθÞ, we can write down the approxi-
mate phase equation (A13) for a weakly perturbed
limit-cycle oscillator described by Eq. (A9). This approxi-
mation, called the phase reduction, greatly simplifies

theoretical analysis of weakly perturbed limit cycles and
has been extensively used for analyzing synchronization
dynamics of weakly interacting nonlinear oscillators [1–5].

APPENDIX B: DERIVATION OF THE
PHASE-REDUCTION THEORY FOR
REACTION-DIFFUSION SYSTEMS

In this section, we give a full derivation of the
phase-reduction theory for RD systems that we briefly
summarized in Sec. II A. Our aim is to derive a simple one-
dimensional phase equation for rhythmic spatiotemporal
patterns described as limit-cycle solutions of RD systems
without recourse to spatial symmetry of the patterns. We do
not require the patterns to be rigidly translating or rotating
in the RD medium without changing their spatial profiles,
as typically assumed in the conventional derivation of the
phase equations for RD systems. Such rhythmic patterns
can thus include oscillating spots and target waves, which
vary their spatial profiles periodically. Rigidly circulating
waves or rotating spirals with spatial translational or
rotational symmetry are also limit-cycle solutions of RD
systems, and thus they can also be treated in the same
framework as we showed in the previous section.
Our strategy is to generalize the conventional phase-

reduction theory for ordinary limit cycles described by
ODEs (see Appendix A for comparison), which assumes
only temporal translational symmetry of the oscillator
dynamics, to limit-cycle solutions of infinite-dimensional
RD systems, thereby avoiding the assumptions on spatial
symmetry. We can develop the theory almost in parallel
with the ODE case by noticing that the finite-dimensional
vector XðtÞ is replaced by a vector field Xðr; tÞ, and
correspondingly, the ordinary dot product of two vectors is
replaced by the inner product of two vector fields.

1. Geometric formulation of the phase-reduction theory

We consider a RD equation of the form

∂
∂tXðr; tÞ ¼ F½Xðr; tÞ; r� þ D∇2Xðr; tÞ; (B1)

where the d-dimensional vector Xðr; tÞ represents the state
of the RD medium at point r in the n-dimensional space at
time t, FðX; rÞ specifies local reaction dynamics at point r,
and D∇2Xðr; tÞ represents diffusion ofX over the medium
with a constant diffusion matrix D. Explicit dependence of
F on r, such as heterogeneity of the medium, may exist.
Appropriate boundary conditions (e.g., periodic or no-flux)
for the problem under consideration are introduced. We
assume that Eq. (B1) has a stable limit-cycle solution of
period T,

χ∶ X0ðr; tÞ ¼ X0ðr; tþ TÞ; (B2)

which is denoted by χ. As in the ODE case, we first define a
phase θðtÞ ∈ ½0; 2πÞ of the system state X0ðr; tÞ on the
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limit-cycle solution χ so that θðtÞ increases with a constant
frequency ω ¼ 2π=T as X0ðr; tÞ evolves on χ under
Eq. (B1). This is performed by identifying the phase with
the time multiplied by the frequency. Namely, we choose a
certain system state X0ðr; t ¼ 0Þ on χ as the origin of the
phase, θ ¼ 0, and assign a phase value

θ ¼ ωtðmod 2πÞ (B3)

to a stateX0ðr; tÞ on χ (t ≥ 0) evolving under Eq. (B1) from
the phase origin X0ðr; t ¼ 0Þ. We will denote the system
state on χ with the phase value θ as X0ðr; θÞ henceforth.
Next, we need to extend the definition of the phase to

the basin of χ. As in the ODE case, we assign the same
phase value θðtÞ to the set of system states fXðr; tÞg that
eventually converge to the system state X0½r; θðtÞ� on χ
under Eq. (B1), namely,

lim
t→þ∞

jjXðr; tÞ −X0½r; θðtÞ�jj ¼ 0: (B4)

Here, jj � � � jj denotes the L2 norm of a spatial pattern
defined as jjAðrÞjj2 ¼ hAðrÞ;AðrÞi, and the inner product
between two spatial patterns AðrÞ and BðrÞ is defined as

hAðrÞ;BðrÞi ¼
Z

AðrÞ ·BðrÞdr: (B5)

The integral is taken over the considered spatial domain
with appropriate boundary conditions. This introduces a
phase functional

θ ¼ ΘfXðrÞg ∈ ½0; 2πÞ (B6)

that maps a given system state XðrÞ in the basin of χ to a
scalar phase θ. Then, the phase θðtÞ ¼ ΘfXðr; tÞg of the
state Xðr; tÞ evolving under Eq. (B1) will constantly obey

_θðtÞ ¼ ω (B7)

not only on the limit-cycle solution χ but also in the whole
basin of χ. Using the chain rule for the functional
derivatives, the above equation can be written as

_θðtÞ ¼ d
dt
ΘfXðr; tÞg ¼

�
δΘfXðrÞg
δXðrÞ

����
XðrÞ¼Xðr;tÞ

;
∂
∂tXðr; tÞ

�

¼
�
δΘfXðrÞg
δXðrÞ

����
XðrÞ¼Xðr;tÞ

;F½Xðr; tÞ;r� þD∇2Xðr; tÞ
�

¼ω; (B8)

where δΘfXðrÞg=δXðrÞ is the functional derivative of
ΘfXðrÞg with respect to XðrÞ ¼ Xðr; tÞ. Thus, the phase
functional ΘfXðrÞg should satisfy

�
δΘfXðrÞg
δXðrÞ ;F½XðrÞ; r� þ D∇2XðrÞ

�
¼ ω (B9)

in the basin of χ. We call a set of system states sharing the
same phase value the isochron of the RD system, general-
izing the same notion for ODEs (Appendix A). The whole
basin of χ is foliated by such isochrons [53]. See Fig. 6(a)
for a schematic illustration.
Now we consider the case in which the RD system is

weakly perturbed as

∂
∂tXðr; tÞ ¼ F½Xðr; tÞ; r� þ D∇2Xðr; tÞ þ pfXðr; tÞ; r; tg;

(B10)

where the perturbation pfXðr; tÞ; r; tg is generally a func-
tional of the stateXðr; tÞ, location r, and time t. We assume
that the original limit-cycle solution χ is only slightly

(a) (b)

FIG. 6. (a) Isochrons of a limit-cycle solution of a reaction-diffusion system. The same phase value is assigned to the system states
(represented by vector fields) that asymptotically converge to the same state on the limit-cycle solution. (b) Linear approximation of the
phase near the limit-cycle solution.
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deformed by the perturbation p. If the phase functional
ΘfXðrÞg is given, then from Eq. (B8), the phase θðtÞ ¼
ΘfXðr; tÞg of the perturbed system obeys

_θðtÞ¼ d
dt
ΘfXðr;tÞg¼

�
δΘfXðrÞg
δXðrÞ

����
XðrÞ¼Xðr;tÞ

;F½Xðr;tÞ;r�

þD∇2Xðr;tÞþpfXðr;tÞ;r;tg
�

¼ωþ
�
δΘfXðrÞg
δXðrÞ

����
XðrÞ¼Xðr;tÞ

;pfXðr;tÞ;r;tg
�
: (B11)

However, this is not a closed equation for θðtÞ because the
functional derivative of ΘfXðr; tÞg and the perturbation
pfXðr; tÞ; r; tg still depend on Xðr; tÞ. Therefore, as in the
ODE case, we approximate Xðr; tÞ in these terms by
X0ðr; θÞ on χ, assuming the perturbation pfXðr; tÞ; r; tg
to be weak enough so that the system state Xðr; tÞ deviates
from X0ðr; θÞ on χ only slightly. Then, at the lowest-order
approximation, a closed phase equation for θðtÞ can be
obtained as

_θðtÞ≃ωþ
�
δΘfXðrÞg
δXðrÞ

����
XðrÞ¼X0½r;θðtÞ�

;pfX0½r;θðtÞ�;r; tg
�
;

(B12)

which is correct up to OðjjpjjÞ. By denoting pðθ; r; tÞ ¼
pfX0ðr; θÞ; r; tg and introducing a phase-sensitivity func-
tion

Qðr; θÞ ¼ δΘfXðrÞg
δXðrÞ

����
XðrÞ¼X0ðr;θÞ

; (B13)

the reduced phase equation (B12) can be concisely written as

_θðtÞ ¼ ωþ hQðr; θÞ;pðθ; r; tÞi (B14)

at the lowest order in the perturbation. The function Qðr; θÞ
is the (functional) gradient of the isochron estimated at
XðrÞ ¼ X0ðr; θÞ on the limit-cycle solution χ and plays the
key role in the present theory.

2. Linear theory around the limit-cycle solution

Though we have formally developed a geometric theory
of phase reduction for the RD system, it is impossible
to obtain ΘfXðrÞg explicitly for general RD systems.
However, only the phase-sensitivity function Qðr; θÞ is
actually necessary to write down the lowest-order phase
equation (B14) for the weakly perturbed RD systems
Eq. (B10). We thus try to derive the equation for
Qðr; θÞ as in the ODE case, focusing only on the vicinity
of the limit cycle χ.
We first note that the phase function ΘðXÞ for the

ODE can be linearly approximated as ΘðXÞ≃ θ þ ZðθÞ ·
½X −X0ðθÞ� for the oscillator state X near X0ðθÞ on χ

using the phase-sensitivity function ZðθÞ defined in
Eq. (A12) (see Appendix A). In a similar spirit, we make
an ansatz that the phase ΘfXðrÞg of a stateXðrÞ of the RD
system near the state X0ðr; θÞ on the limit cycle χ can be
linearly approximated as

ΘfXðrÞg≃ θ þ hQðr; θÞ;XðrÞ −X0ðr; θÞi; (B15)

and we examine whether this ansatz is reasonable. When
XðrÞ is simply a state on the limit cycle χ with phase θ,
i.e.,XðrÞ ¼ X0ðr; θÞ, Eq. (B15) gives ΘfX0ðr; θÞg ¼ θ. If
Eq. (B15) is, furthermore, valid for arbitrary states fXðrÞg
sufficiently close to the unperturbed stateX0ðr; θÞ on χ, the
function Qðr; θÞ will play the role of the phase-sensitivity
function for the RD system. This actually holds by
choosing the function Qðr; θÞ appropriately. See Fig. 6(b)
for a schematic illustration.
We now derive the equation for Qðr; θÞ by generalizing

the argument in Refs. [4,5] for the phase-sensitivity
function ZðθÞ of limit cycles described by ODEs (see
also Appendix A). At t ¼ 0, we prepare an initial state
X0ðr; θ ¼ 0Þ ¼ X0ðr; t ¼ 0Þ on the limit cycle χ with the
phase θ ¼ 0 and a slightly perturbed initial state

Xðr; t ¼ 0Þ ¼ X0ðr; θ ¼ 0Þ þ yðr; t ¼ 0Þ (B16)

near X0ðr; θ ¼ 0Þ, where yðr; t ¼ 0Þ is a small spatial
perturbation given to X0ðr; θ ¼ 0Þ. We evolve these two
states without applying further perturbations. The linear-
ized equation for yðr; tÞ ¼ Xðr; tÞ −X0½r; θðtÞ� can be
obtained from Eq. (B1) as

∂
∂t yðr; tÞ ¼ J½θðtÞ�yðr; tÞ þ D∇2yðr; tÞ; (B17)

where JðθÞ ¼ J½X0ðr; θÞ� is a Jacobi matrix of F estimated
at X ¼ X0ðr; θÞ on χ. From Eq. (B15), the phase of the
unperturbed state X0½r; θðtÞ� is θðtÞ ¼ ΘfX0½r; θðtÞ�g ¼
ωt, and the phase of the perturbed state Xðr; tÞ is given by

θ0ðtÞ ¼ ΘfXðr; tÞg
¼ ΘfX0½r; θðtÞ� þ yðr; tÞg
≃ θðtÞ þ hQ½r; θðtÞ�; yðr; tÞi (B18)

under the linear approximation. This θ0ðtÞ should also
increase with a constant frequency ω by the definition of
the isochron, i.e., dθ0ðtÞ=dt ¼ ω, because no perturbation is
given after t ¼ 0. Therefore, the following equation should
hold:

0 ¼ d
dt

½θ0ðtÞ − θðtÞ� ¼ ∂
∂t hQ½r; θðtÞ�; yðr; tÞi

¼
� ∂
∂tQ½r; θðtÞ�; yðr; tÞ

�
þ
�
Q½r; θðtÞ�; ∂∂t yðr; tÞ

�
:

(B19)

Using Eq. (B17), the last term can be transformed as
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�
Q½r; θðtÞ�; ∂∂t yðr; tÞ

�

¼ hQ½r; θðtÞ�; J½θðtÞ�yðr; tÞ þ D∇2yðr; tÞi
¼ hJ½θðtÞ�†Q½r; θðtÞ� þ D†∇2Q½r; θðtÞ�; yðr; tÞi; (B20)

where, as usual, partial integration is performed assuming
that surface terms vanish or cancel, and † denotes the
matrix transpose. Equation (B19) now yields

� ∂
∂tQ½r;θðtÞ�þJ½θðtÞ�†Q½r;θðtÞ�þD†∇2Q½r;θðtÞ�;yðr;tÞ

�

¼0; (B21)

which should hold for any yðr; tÞ evolving from arbitrary
yðr; t ¼ 0Þ. Therefore, Q½r; θðtÞ� should satisfy the follow-
ing adjoint equation:

∂
∂tQ½r; θðtÞ� ¼ −J½θðtÞ�†Q½r; θðtÞ� − D†∇2Q½r; θðtÞ�;

(B22)

or equivalently, by using the relation ∂=∂t ¼ ω∂=∂θ
(θ ¼ ωt),

ω
∂
∂θQðr; θÞ ¼ −JðθÞ†Qðr; θÞ − D†∇2Qðr; θÞ; (B23)

which we presented as Eq. (3) in Sec. II.
Since this adjoint equation is linear, we also need to

normalize Qðr; θÞ appropriately. As in the ODE case, the
normalization condition for Qðr; θÞ can be obtained by
differentiating the identity θðtÞ ¼ ΘfX0½r; θðtÞ�g ¼ ωt
by t as

ω ¼ d
dt

θðtÞ ¼ d
dt

ΘfX0½r; θðtÞ�g

¼
�
δΘfXðrÞg
δXðrÞ

����
XðrÞ¼X0½r;θðtÞ�

;
∂
∂tX0½r; θðtÞ�

�

¼ hQ½r; θðtÞ�;FðX0½r; θðtÞ�; rÞ þ D∇2X0½r; θðtÞ�i:
(B24)

Therefore, the following normalization condition should be
satisfied:

ω ¼ hQðr; θÞ;F½X0ðr; θÞ; r� þ D∇2X0ðr; θÞi: (B25)

Note that this condition can also be expressed, again using
the relation ∂=∂t ¼ ω∂=∂θ, as

�
Qðr; θÞ; ∂∂θX0ðr; θÞ

�
¼ 1; (B26)

which yields the normalization condition Eq. (4) given
in Sec. II.

Thus, if the function Qðr; θÞ is the 2π-periodic solution
to Eq. (B23) with the constraint (B26), the approximate
phase function Eq. (B15) will satisfy the desired condition
Eq. (B19) in the vicinity of χ, andQðr; θÞ will play the role
of the phase-sensitivity function of the limit-cycle solution
χ of the RD system. Note that Eqs. (B23) and (B26) are
straightforward generalizations of the conventional adjoint
method for the ODE, Eq. (A15), and Eq. (A16). Generally,
the function Qðr; θÞ should be calculated numerically by
solving the adjoint Eq. (B23) with Eq. (B26). In numerical
calculations, it is useful to integrate the adjoint
equation (B23) backward in time to avoid numerical
overflow with occasional normalization by Eq. (B26), as
we explained in Sec. III A.
Once we obtain the frequency ω and the phase-

sensitivity function Qðr; θÞ, we can write down the
approximate phase equation (B14) for a slightly perturbed
RD system described by Eq. (B10). Note that the infinite-
dimensional RD system subjected to weak perturbations is
reduced to a single one-dimensional phase equation, which
drastically simplifies the analysis of weakly perturbed
rhythmic spatiotemporal patterns. As a simple example
of this phase reduction theory for RD systems, we analyzed
synchronization dynamics of a pair of coupled RD systems
exhibiting rhythmic patterns in the previous section, i.e.,
the circulating pulses, oscillating spots, target waves, and
rotating spirals of the FitzHugh-Nagumo model.

APPENDIX C: PHASE-SENSITIVITY FUNCTIONS
OF THE TARGET-WAVE SOLUTION

In Fig. 3, the limit-cycle solution of the FitzHugh-
Nagumo (FHN) reaction-diffusion model representing
target waves and its phase-sensitivity function are shown
only for θ ¼ 0. In Figs. 7 and 8, the limit-cycle solution
X0ðr; θÞ and the phase-sensitivity function Qðr; θÞ are
displayed for the whole period of oscillation (0≤θ<2π)
with intervals of π=8, for the same parameter values as
those used in Fig. 3.
We can observe that both the activator (u) and inhibitor

(v) components of the phase-sensitivity function Qðr; θÞ
are spatially localized at the pacemaker region. As the
system undergoes an oscillation and emits a target wave
from the pacemaker region, both components of Qðr; θÞ
around the pacemaker region oscillate once and become
either positive or negative. BecauseQðr; θÞ is localized, the
perturbations should be given to the pacemaker region to
affect the overall phase of the target-wave solution; those
applied to other regions have little effect on the phase of the
target wave. This is a consequence of the fact that the
overall rhythm of the target-wave solution is essentially
controlled by the pacemaker region.
In a pair of mutually coupled RD systems exhibiting

target waves, the mutual coupling terms are treated as the
perturbations. The phase of the target-wave solution in each
system is either advanced or retarded when the pacemaker
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FIG. 7. Limit-cycle solution X0ðr; θÞ and phase-sensitivity function Qðr; θÞ of the target wave for θ ¼ 0; π=8; 2π=8;…; 7π=8. First
column: Activator (u) component of X0ðr; θÞ. Second column: Inhibitor (v) component of X0ðr; θÞ. Third column: u component of
Qðr; θÞ. Fourth column: v component of Qðr; θÞ. The parameters are the same as in Fig. 3.
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FIG. 8. Limit-cycle solutionX0ðr; θÞ and phase-sensitivity functionQðr; θÞ of the target wave for θ ¼ 8π=8; 9π=8; 10π=8;…; 15π=8.
First column: Activator (u) component ofX0ðr; θÞ. Second column: Inhibitor (v) component ofX0ðr; θÞ. Third column: u component of
Qðr; θÞ. Fourth column: v component of Qðr; θÞ. The parameters are the same as in Fig. 3.
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region is perturbed by the target wave of the other system.
The net effect of the phase-response property and the
mutual coupling leads to either in-phase or antiphase
synchronization of the two target waves, which is quanti-
tatively characterized by the function ΓaðϕÞ. As we showed
in Sec. III, ΓaðϕÞ allows both types of synchronization, and
one is selected by the initial phase difference between the
two RD systems.

APPENDIX D: NONLINEAR PHASE RESPONSE
TO STRONG PERTURBATIONS

The main focus of the present study is to develop a
phase-reduction theory for weakly perturbed rhythmic
spatiotemporal patterns in the linear regime. We derived
the phase-sensitivity function, which quantifies the
linear response characteristics of the rhythmic pattern to

sufficiently weak spatial stimuli. The phase-response
curves RðθÞ obtained by direct numerical simulations
agreed well with the theoretical curves obtained from the
adjoint equation, as shown in Figs. 1–4, when the stimulus
intensity ε is sufficiently small.
As we further increase the stimulus intensity ε and kick

the system state away from the limit cycle, the curvature of
the isochron in the infinite-dimensional state space will
become non-negligible, and the linear approximation to the
isochron, Eq. (2), will be worse. Moreover, if the stimulus
intensity becomes too strong, the system state will be
kicked out of the basin of the original limit-cycle solution;
i.e., the rhythmic spatiotemporal pattern under consider-
ation will collapse, and the definition of the phase itself
will become impossible. Though we cannot visualize the
isochron in the infinite-dimensional state space of the RD
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FIG. 9. Phase-response curves of four types of rhythmic spatiotemporal patterns to strong perturbations obtained by direct numerical
simulations. Parameters and stimulation patterns are described in Figs. 1–4. (a) Circulating pulse. A bell-shaped perturbation is given to
the activator (u) component. When ε ¼ 5 × 10−2, the circulating pulse collapses and the phase response becomes undefined in the
interval indicated in the figure. (b) Oscillating spot. A bell-shaped perturbation is given to the activator (u) component. When ε ¼ 0.8,
the oscillating spot collapses. (c) Target wave. A sinusoidal perturbation is given to the activator (u) component. When ε ¼ 0.07, the
target wave collapses. (d) Rotating spiral. The checkerboard-like perturbation is given to the activator (u) component. When ε ¼ 0.03,
the spiral collapses.
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system, these effects are clearly visible in the phase-
response curves to stronger perturbations obtained by direct
numerical simulations.
Figure 9 shows the phase-response curves of the four

types of rhythmic spatiotemporal patterns in Figs. 1–4, i.e.,
the circulating pulse on a ring, oscillating spot, target wave,
and rotating spiral, obtained using stronger stimuli. As we
increase the stimulus intensity ε, nonlinearity in the phase
response (which reflects the curvature of the isochron)
becomes prominent, and the normalized phase-response
curves start to deviate from the theoretical curve. As ε
exceeds a certain critical value, the original rhythmic
spatiotemporal pattern is destroyed and the phase response
becomes undefined. The effect of such strong (supra-
threshold) stimuli to circulating pulses in excitable media
has also been studied by Nomura and Glass in Ref. [21].
For low-dimensional limit-cycle oscillators described by

ODEs, numerical methods to calculate the full nonlinear
isochrons have been developed [54,55] and higher-order
approximations to the isochron have been calculated
[56,57]. It may also be possible to develop similar methods
for rhythmic spatiotemporal patterns in RD systems, e.g.,
by representing the spatiotemporal patterns using a finite
number of basis functions or by considering higher-order
terms in the functional Taylor expansion of the iso-
chron, Eq. (2).

APPENDIX E: FREQUENCY SHIFT OF THE
SYNCHRONIZED PATTERNS

As explained in Sec. II B, the oscillation frequency
ωþ ΓðϕÞ of stably phase-locked rhythmic spatiotemporal
patterns can slightly shift from the frequency ω of the
unperturbed single pattern by ΓðϕÞ, where ϕ is the sta-
tionary phase difference. Table I compares the shift in the
frequency measured by direct numerical simulations with
the theoretical values ΓðϕÞ for the four types of rhythmic
spatiotemporal patterns shown in Figs. 1–4. For the
synchronized circulating pulses in Fig. 1, several stable
phase differences (marked as A–D) are possible. For the
oscillating spots in Fig. 2, the coupled systems exhibit
in-phase synchronization (phase difference ϕ ¼ 0) when
L ¼ 80 and antiphase synchronization (ϕ ¼ π) when
L ¼ 120. For the target waves and spirals in Figs. 3 and 4,
both in-phase (ϕ ¼ 0) and antiphase (ϕ ¼ π) synchroniza-
tion are possible depending on the initial conditions. For
the in-phase synchronized circulating pulses, target waves,
and rotating spirals with the phase difference ϕ ¼ 0, the
coupling term vanishes because of symmetry, and corre-
spondingly, Γðϕ ¼ 0Þ ¼ 0; i.e., no frequency shift occurs
[the target waves in Fig. 3 are not symmetrically coupled,
and thus Γðϕ ¼ 0Þ ≠ 0 in this case]. When the two patterns
are synchronized in antiphase or with other phase
differences, ΓðϕÞ ≠ 0 and a small frequency shift occurs.
In every case, the theoretical frequency shift ΓðϕÞ is in

reasonable agreement with the frequency shift obtained by
direct numerical simulations.

APPENDIX F: LIST OF VIDEO FILES

The video files listed below show the dynamics of
in-phase and antiphase synchronization in coupled RD
systems exhibiting oscillating spots, target waves, and
rotating spirals.

TABLE I. Shift in the frequency of the phase-locked rhythmic
spatiotemporal patterns. Theoretical values of the frequency shift
ΓðϕÞ, obtained using the theoretical phase-sensitivity function,
are compared with those measured by direct numerical simu-
lations. Stable phase differences in the cases B, C, and D of the
circulating pulses are obtained by direct numerical simulations.

Oscillator
Stable phase
difference ϕ

Theoretical
value ΓðϕÞ

Numerical
result

Circulating pulse A (0) 0 0
B (0.5) −1.3 × 10−4 −1.4 × 10−4

C (1.2) −1.3 × 10−4 −1.4 × 10−4

D (1.8) −1.3 × 10−4 −1.4 × 10−4

Oscillating spot
(L ¼ 80)

0 0 0

Oscillating spot
(L ¼ 120)

π 1.6 × 10−4 1.5 × 10−4

Target wave 0 2.2 × 10−5 2.4 × 10−5

π 1.2 × 10−4 1.2 × 10−4

Rotating spiral 0 0 0
π −1.7 × 10−4 −1.7 × 10−4

VIDEO 1. In-phase synchronization of oscillating spots in a 1D
system of length L ¼ 80. The parameters are the same as in
Fig. 2. The initial phase difference is ϕð0Þ ¼ 0.616. The bottom
figure shows the evolution of the activator variables ðu1; u2Þ at the
center (x ¼ L=2) of both systems.
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VIDEO 2. Antiphase synchronization of oscillating spots in a
1D system of length L ¼ 120. The parameters are the same as in
Fig. 2. The initial phase difference is ϕð0Þ ¼ 1.61. The bottom
figure shows the evolution of the activator variables ðu1; u2Þ at the
center (x ¼ L=2) of both systems.

VIDEO 3. In-phase synchronization of target waves.
The parameters are the same as in Fig. 3 except for
K ¼ diagðk ¼ 1 × 10−3; 0Þ. The initial phase difference is
ϕð0Þ ¼ 1.10. The bottom figure shows the evolution of the
activator variables u1 and u2 at the corresponding locations,
i.e., ðx1; y1Þ ¼ ð3L=4; L=4Þ of system 1 and ðx2; y2Þ ¼
ðL=4; L=4Þ of system 2.

VIDEO 4. Antiphase synchronization of target waves. The
parameters are the same as in Fig. 3 except for
K ¼ diagðk ¼ 1 × 10−3; 0Þ. The initial phase difference is
ϕð0Þ ¼ 1.16. The bottom figure shows the evolution of the
activator variables u1 and u2 at the corresponding locations,
i.e., ðx1; y1Þ ¼ ð3L=4; L=4Þ of system 1 and ðx2; y2Þ ¼
ðL=4; L=4Þ of system 2.

VIDEO 5. In-phase synchronization of rotating spirals. The
parameters are the same as in Fig. 4 except for
K ¼ diagðk ¼ 5 × 10−4; 0Þ. The initial phase difference is
ϕð0Þ ¼ 1.38. The bottom figure shows the evolution of
the activator variables ðu1; u2Þ at ðx; yÞ ¼ ðL=4; L=4Þ of both
systems.
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