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Semiclassical phase reduction theory for quantum synchronization
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We develop a general theoretical framework of semiclassical phase reduction for analyzing synchronization of
quantum limit-cycle oscillators. The dynamics of quantum dissipative systems exhibiting limit-cycle oscillations
are reduced to a simple, one-dimensional classical stochastic differential equation approximately describing the
phase dynamics of the system under the semiclassical approximation. The density matrix and power spectrum
of the original quantum system can be approximately reconstructed from the reduced phase equation. The
developed framework enables us to analyze synchronization dynamics of quantum limit-cycle oscillators using
the standard methods for classical limit-cycle oscillators in a quantitative way. As an example, we analyze
synchronization of a quantum van der Pol oscillator under harmonic driving and squeezing, including the case
that the squeezing is strong and the oscillation is asymmetric. The developed framework provides insights into
the relation between quantum and classical synchronization and will facilitate systematic analysis and control of
quantum nonlinear oscillators.
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I. INTRODUCTION

Spontaneous rhythmic oscillations and synchronization
arise in various science and technology fields, such as laser
oscillations, electronic oscillators, and spiking neurons [1–6].
Various nonlinear dissipative systems exhibiting rhythmic dy-
namics can be modeled as limit-cycle oscillators. A standard
theoretical framework for analyzing limit-cycle oscillators in
classical dissipative systems is the phase reduction theory
[1–3,7–9]. By using this framework, we can systematically
reduce multidimensional nonlinear dynamical equations de-
scribing weakly perturbed limit-cycle oscillators to a one-
dimensional phase equation that approximately describes the
oscillator dynamics. The simple semilinear form of the phase
equation, characterized only by the natural frequency and
phase sensitivity function (PSF) of the oscillator, facilitates
detailed theoretical analysis of the oscillator dynamics.

The phase reduction theory has been successfully used
to analyze universal properties of limit-cycle oscillators in a
systematic way, such as synchronization of oscillators with
periodic forcing and mutual synchronization of coupled os-
cillators [1–6]. It has been essential in the understanding
of synchronization phenomena in classical rhythmic sys-
tems, for example, the collective synchronization transition
of a population of oscillators and oscillatory pattern dy-
namics in spatially extended chemical or biological systems
[1,2]. Recently, generalizations of the phase reduction theory
to nonconventional physical systems, such as time-delayed
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oscillators [10,11], piecewise-smooth oscillators [12], collec-
tively oscillating networks [13], and rhythmic spatiotemporal
patterns [14,15], have also been discussed.

Recent progress in experimental studies has revealed that
synchronization can take place in coupled nonlinear oscilla-
tors with intrinsically quantum-mechanical origins, such as
micro and nanomechanical oscillators [16–20], spin torque
oscillators [21], and cooled atomic ensembles [22,23]. More-
over, theoretical studies have been performed on the syn-
chronization of nonlinear oscillators which explicitly show
quantum signatures [24–50], such as optomechanical oscilla-
tors [24–26], cooled atomic ensembles [27,28], trapped ions
[29–31], spins [32], and superconducting circuits [33]. In
particular, a number of studies have analyzed the quantum van
der Pol (vdP) oscillator [29], which is a typical model of quan-
tum self-sustained oscillators, for example, synchronization
of a quantum vdP oscillator by harmonic driving [26,34] or
squeezing [35], mutual synchronization of coupled quantum
vdP oscillators [30,36], and quantum fluctuations around os-
cillating and locked states of a quantum vdP oscillator [40,41].

In addition to its fundamental importance as a novel phys-
ical phenomenon where nonlinear and quantum phenomena
have combined effect, quantum synchronization may also be
useful in developing metrological applications, such as the
improvement of the measurement accuracy in the Ramsey
spectroscopy for atomic clocks [28] and the precise mea-
surement of the resistance standard with a superconducting
device [42]; an application of the limit-cycle oscillation to
analog memory in a quantum optical device [43] has also been
considered.

Considering the importance of phase reduction for ana-
lyzing synchronization of classical nonlinear oscillators, we
aim to develop a phase reduction theory also for quantum
nonlinear oscillators. In the analysis of quantum synchro-
nization, phase-space approaches using the quasiprobability
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FIG. 1. A schematic diagram of the semiclassical phase reduc-
tion for quantum synchronization. A quantum self-sustained oscil-
lator, which has a stable limit-cycle solution in the classical limit,
can be described by an approximate one-dimensional stochastic
differential equation for a phase variable φ that characterizes the
system state. The system state can be approximately reconstructed
from the reduced phase equation.

distributions of quantum systems are commonly employed.
In a pioneering study, Hamerly and Mabuchi [43] derived a
phase equation from the stochastic differential equation (SDE)
describing a truncated Wigner function of a quantum limit-
cycling system in a free-carrier cavity. However, it is not fully
consistent with the classical phase reduction theory, because
the notions of the asymptotic phase and PSF, which are essen-
tial in the classical theory, are not introduced. Consequently,
the limit cycle needs to be approximately symmetric for the
analysis of synchronization with periodic forcing [43]. Similar
phenomenological phase equations, where the phase simply
represents the geometric angle of a circular limit cycle, have
also been used in several studies on quantum synchronization
[24,26,28,47]; however, a systematic phase reduction theory
has not been established so far.

In this study, we formulate a general framework of the
phase reduction theory for quantum synchronization under the
semiclassical approximation, where the quantum dynamics
can be approximately described by a SDE representing a
system state in the phase space fluctuating along a deter-
ministic classical trajectory due to small quantum noise. We
derive a linearized multidimensional semiclassical SDE from
a general master equation that describes weakly perturbed
quantum dissipative systems with a single degree of freedom
exhibiting stable nonlinear oscillations, and subsequently re-
duce it to an approximate one-dimensional classical SDE for
the phase variable of the system (see Fig. 1). The derived
phase equation has a simple form, characterized by the natural
frequency, PSF, and Hessian matrix of the limit cycle in
the classical limit, and a noise term arising from quantum
fluctuations around the limit cycle. The quantum-mechanical
density matrix and power spectrum of the original system
can be approximately reconstructed from the reduced phase
equation.

On the basis of the reduced phase equation, synchro-
nization dynamics of quantum nonlinear oscillators can be
analyzed in detail by using standard techniques for classical
nonlinear oscillators [1–3,7–9]. As an example, we analyze
synchronization of a quantum vdP oscillator under harmonic
driving and squeezing. In particular, we consider the case
with strong squeezing, where the oscillation is asymmetric
and the analytical solution is not available. It is shown that,
even in such cases, we can numerically calculate the necessary

quantities in the classical limit and use them to analyze the
synchronization dynamics of the original quantum system,
provided that the quantum noise and the perturbations given
to the oscillator are sufficiently weak.

The rest of this paper is organized as follows. In Sec. II,
the derivation of the approximate phase equation for a quan-
tum limit-cycle oscillator subjected to weak perturbations is
given. In Sec. III, we analyze a quantum vdP oscillator with
harmonic driving and squeezing using the derived phase equa-
tion. Section IV gives concluding remarks, and Appendices
provide detailed derivations of the equations and discussions.

II. THEORY

A. Stochastic differential equation for phase-space variables

We consider quantum dissipative systems with a single
degree of freedom interacting with linear and nonlinear reser-
voirs, which has a stable limit-cycle solution in the classical
limit and is driven by weak perturbations. Under the assump-
tion that correlation times of the reservoirs are significantly
shorter than the timescale of the main system, a Markovian
approximation of the reservoirs can be employed and the
evolution of the system can be described by a quantum master
equation [51,52],

ρ̇ = −i[H + εH̃ (t ), ρ] +
n∑

m=1

D[Lm]ρ, (1)

where ρ is a density matrix representing the system state, H
is a system Hamiltonian, εH̃ (t ) is a time-dependent Hamilto-
nian representing weak external perturbations applied to the
system (0 < ε � 1), n is the number of reservoirs, Lm is the
coupling operator between the system and the mth reservoir
(m = 1, . . . , n), D[L]ρ = LρL† − (ρL†L + L†Lρ)/2 denotes
the Lindblad form, and the Planck constant is set as h̄ = 1. We
consider a physical condition where the effects of the quantum
noise and external perturbations are sufficiently weak and of
the same order, and perturbatively analyze their effect on the
semiclassical dynamics of the system.

First, we transform Eq. (1) into a multidimensional SDE by
introducing a phase-space quasiprobability distribution, such
as the P, Q, or Wigner representation [51,52]. In this paper,
we use the P representation, because the density matrix and
spectrum can be reconstructed using a simple and natural
approximation. In the P representation, the density matrix ρ is
represented as ρ = ∫ P(α)|α〉〈α|dα, where |α〉 is a coherent
state specified by a complex value α ∈ C, or equivalently
by a two-dimensional complex vector α = (α, α∗)T ∈ C2×1,
P(α) is a quasiprobability distribution of α, dα = dαdα∗, the
integral is taken over the entire space spanned by α, and *
indicates complex conjugate.

The Fokker-Planck equation (FPE) equivalent to Eq. (1)
can be written as

∂P(α, t )

∂t
=
⎡
⎣−

2∑
j=1

∂ j{Aj (α) + εÃ j (α, t )}

+ 1

2

2∑
j=1

2∑
k=1

∂ j∂k{εDjk (α)}
⎤
⎦P(α, t ), (2)
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where Aj (α) and Ã j (α, t ) are the jth components of com-
plex vectors A(α) = (A1(α), A∗

1(α))T ∈ C2×1 and Ã(α, t ) =
(Ã1(α, t ), Ã∗

1(α, t ))T ∈ C2×1 representing the system dynam-
ics and perturbations, respectively, εDjk (α) is the ( j, k)-th
component of the symmetric diffusion matrix εD(α) ∈ C2×2

representing quantum fluctuations, and the complex partial
derivatives are defined as ∂1 = ∂/∂α and ∂2 = ∂/∂α∗ [note
that A2(α) = A∗

1(α) and Ã2(α, t ) = Ã∗
1(α, t )].

The drift term A(α) consists of terms arising from the
system Hamiltonian H and the dissipation {Lm}, εÃ(α, t ) rep-
resents the small terms arising from the perturbation Hamil-
tonian εH̃ (t ), and the diffusion matrix εD(α) represents the
intensity of the small quantum noise, generally arising from
all terms of H , εH̃ (t ), and {Lm}. These terms can be explicitly
calculated from the master equation in Eq. (1) by using the
standard calculus for phase-space representation when H ,
εH̃ (t ), and {Lm} are given [51,52]. The external perturbation
εÃ(α, t ) and the diffusion matrix εD(α) are assumed to be of
the same order, O(ε).

By introducing an appropriate complex matrix
√

εβ(α) ∈
C2×2 (see Appendix A for the explicit form), the diffusion ma-
trix εD(α) can be represented as εD(α) = √

εβ(α)(
√

εβ(α))T

and the Ito SDE corresponding to Eq. (2) for the phase-space
variable α(t ) is given by

dα = {A(α) + εÃ(α, t )}dt + √
εβ(α)dW , (3)

where W (t ) = (W1(t ),W2(t ))T ∈ R2×1 represents a vector
of independent Wiener processes Wi(t ) (i = 1, 2) satisfying
〈dWidWj〉 = δi jdt .

It should be noted that diffusion matrix of certain quantum
systems in the P representation becomes negative definite for
certain α [51,52]. For such systems, we need to employ, for
example, the positive P representation with two additional
nonclassical variables in place of the P representation, as used
by Navarrete-Benlloch et al. [40] in the Floquet analysis of
quantum oscillations. In this study, to present the fundamental
idea of the semiclassical phase reduction in its simplest form,
we only consider the case for which the diffusion matrix
is always positive semidefinite along the limit cycle and
formulate the phase reduction theory in the two-dimensional
phase space of classical variables.

B. Derivation of the phase equation

Our aim is to derive an approximate one-dimensional SDE
for the phase variable of the system from the SDE in Eq. (3) in
the P representation. To this end, we define a real vector X =
(x, p)T = (Re α, Im α)T ∈ R2×1 from the complex vector α.
The real-valued expression of Eq. (3) for X (t ) is then given
by an Ito SDE,

dX = {F(X ) + εq(X , t )}dt + √
εG(X )dW , (4)

where F(X ) ∈ R2×1, q(X , t ) ∈ R2×1, and G(X ) ∈ R2×2 are
real-valued equivalent representations of the system dynamics
A(α) ∈ C2×1, perturbation Ã(α, t ) ∈ C2×1, and noise inten-
sity β(α) ∈ C2×2 in Eq. (3), respectively.

We assume that the system in the classical limit without
perturbation and quantum noise, Ẋ = F(X ), has an exponen-
tially stable limit-cycle solution X 0(t ) = (x0(t ), p0(t ))T =
X 0(t + T ) with a natural period T and frequency ω = 2π/T .

In the same way as the phase reduction for classical limit cy-
cles [1–3,7–9], we can introduce an asymptotic phase function

(X ) : B ⊂ R2×1 → [0, 2π ) such that ∇
(X ) · F(X ) = ω is
satisfied for all system states X in the basin B of the limit cycle
in the classical limit, where ∇
(X ) ∈ R2×1 is the gradient
of 
(X ). Using this phase function, we define the phase
of a system state X ∈ B as φ = 
(X ). It then follows that
φ̇ = 
̇(X ) = F(X ) · ∇
(X ) = ω, i.e., φ always increases at
a constant frequency ω with the evolution of X . Here, the
inner product between two vectors a = (a0, a2, · · · , aN−1)T ∈
RN×1 and b = (b0, b2, · · · , bN−1)T ∈ RN×1 is defined as a ·
b =∑N−1

i=0 aibi. In the following formulation, we represent the
system state X on the limit cycle as X 0(φ) = (x0(φ), p0(φ))T

as a function of the phase φ rather than the time t . In this
representation, X 0(φ) is a 2π -periodic function of φ, X 0(φ) =
X 0(φ + 2π ). Note that an identity 
(X 0(φ)) = φ is satisfied
by the definition of 
(X ).

When the noise and perturbations are sufficiently weak and
the deviation of the state X from the limit cycle is small,
we can approximate X (t ) by a state X 0(φ(t )) on the limit
cycle as X (t ) ≈ X 0(φ(t )) and derive a SDE for the phase in
the lowest order approximation by using the Ito formula as
(see Appendix B for details)

dφ = {ω + εZ(φ) · q(φ, t ) + εg(φ)}dt

+√
ε{G(φ)T Z(φ)} · dW , (5)

where the drift term is correct up to O(ε) and the noise
intensity is correct up to O(

√
ε).

In the above phase equation, the gradient ∇
 of 
(X )
at X is approximately evaluated at X (φ) on the limit cy-
cle and is denoted as Z(φ) = ∇
|X=X 0(φ) ∈ R2×1. We call
this Z(φ) the phase sensitivity function (PSF) of the limit
cycle, which characterizes the linear response property of
the oscillator phase to given perturbations [2,7]. Similarly,
the perturbation and noise intensity can also be evaluated
approximately at X = X 0(φ) on the limit cycle and they
are denoted as q(φ, t ) = q(X 0(φ), t ) and G(φ) = G(X 0(φ)),
respectively. The additional function g(φ) in the drift term in
Eq. (5) arises from the change of the variables and is given by

g(φ) = 1
2 Tr
{
G(φ)T Y (φ)G(φ)

}
, (6)

where Y (φ) = ∇T ∇
|X=X 0(φ) is a Hessian matrix of the
phase function 
(X ) also evaluated at X = X 0(φ) on the
limit cycle. All these functions are 2π -periodic, as they are
functions of X 0(φ).

It is well known in the classical phase reduction theory
that the PSF can be obtained as a 2π -periodic solution to
the following adjoint equation and an additional normalization
condition [7–9]:

ω
d

dφ
Z(φ) = −JT (φ)Z(φ), Z(φ) · dX 0(φ)

dφ
= 1, (7)

respectively, where J(φ) = J(X 0(φ)) ∈ R2×2 is a Jacobian
matrix of F(X ) at X = X 0(φ) on the limit cycle. It is also
known that the Hessian matrix Y (φ) on the limit cycle can be
calculated as a 2π -periodic solution to an adjoint-type equa-
tion [53,54] with an appropriate constraint. These equations
for Y (φ) are detailed in the Appendix B. In the numerical
calculations, Z(φ) can easily be obtained by the backward
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integration of the adjoint equation with occasional normaliza-
tion as proposed by Ermentrout [3], and then the Hessian Y (φ)
can be obtained by a shooting method [53].

Because of the additional term g(φ) in Eq. (10), the effec-
tive frequency ω̃ = 〈dφ〉/dt of the oscillator in the absence of
the perturbation q(φ, t ) is given by

ω̃ = ω + ε

2π

∫ 2π

0
g(ψ ′)dψ ′, (8)

which is slightly different from the natural frequency of the
oscillator ω in the classical limit. Though not used in the
present study, we can further introduce a new phase variable
ψ that is only slightly different from φ by a near-identity
transform as φ = ψ + εn(ψ ), where n(ψ ) is a 2π -periodic
function with n(0) = 0, and eliminate the additional function
g(φ) in Eq. (5) by renormalizing it into the frequency term.
The new phase ψ then obeys a simpler SDE of the form

dψ = {ω̃ + εZ(ψ ) · q(ψ, t )}dt + √
εh(ψ )dW, (9)

where h(ψ ) =
√∑2

i=1 {G(ψ )T Z(ψ )}2
i and W (t ) is a one-

dimensional Wiener process. As before, the drift term is
correct up to O(ε) and the noise intensity is correct up to
O(

√
ε). See Appendix C for the details. In this study, we

use the original phase equation in Eq. (5) for numerical
simulations and verify its validity. We also note here that
the phase equation derived in Ref. [43] does not contain a
term with the Hessian matrix, because the order of the noise
intensity is implicitly assumed to be O(ε) in Ref. [43].

From the reduced SDE in Eq. (5), we can derive a cor-
responding FPE describing the probability density function
P(φ, t ) of the phase variable φ as

∂

∂t
P(φ, t ) = − ∂

∂φ
{ω + εZ(φ) · q(φ, t ) + εg(φ)}P(φ, t )

+ ε

2

∂2

∂φ2
h(φ)2P(φ, t ). (10)

Using this FPE, we can obtain the stationary distribution and
transition probability of the phase variable φ and use them to
reconstruct the density matrix and power spectrum.

C. Reconstruction of the density matrix

From the reduced phase equation, we can approximately
reconstruct the quantum state as follows. Using the phase vari-
able φ, the oscillator state in the classical limit can be approx-
imated as X ≈ X 0(φ) = (x0(φ), p0(φ))T , or α ≈ α0(φ) =
(α0(φ), α0(φ)∗)T = (x0(φ) + ip(φ), x0(φ) − ip(φ))T in the
original complex representation. Therefore the quantum state
at phase φ is approximately described as |α0(φ)〉 and the
density matrix ρ is approximately represented by using the
probability density function P(φ) of the phase variable φ,
obtained from the SDE in Eq. (5) or FPE in Eq. (10), as

ρ ≈
∫ 2π

0
dφP(φ)|α0(φ)〉〈α0(φ)|, (11)

which is simply a mixture of coherent states weighted by the
distribution of the phase on the classical limit cycle. Thus, we
can approximately reconstruct the density matrix of the orig-
inal quantum oscillator from the classical SDE for the phase

variable φ, which is characterized by the natural frequency ω,
PSF Z(φ), Hessian matrix Y (φ), and noise intensity G(φ) that
represents quantum fluctuations around the limit cycle.

The derivation of the phase equation in Eq. (5) from
the original quantum-mechanical master equation in Eq. (1)
and reconstruction of the quantum-mechanical density ma-
trix from the approximate phase equation, Eq. (11), are the
main result of the present work. A schematic diagram of
the proposed method is illustrated in Fig. 1. The reduced
phase equation is essentially the same as that for the classical
limit-cycle oscillator driven by noise, and synchronization dy-
namics of the weakly perturbed quantum nonlinear oscillator
in the semiclassical regime can be analyzed on the basis of the
reduced phase equation by using the standard methods for the
classical limit-cycle oscillator.

III. EXAMPLES

A. Quantum van der Pol oscillator with harmonic
driving and squeezing

As an example, we consider a quantum vdP oscillator
subjected to harmonic driving and squeezing. We assume that
the harmonic driving is sufficiently weak and treat it as a
perturbation. As for the squeezing, we consider two cases; (i)
the squeezing is sufficiently weak and can also be treated as
a perturbation, and (ii) the squeezing is relatively strong and
cannot be treated as a perturbation.

We denote by ω0, ωd , and ωsq the frequencies of the
oscillator, harmonic driving, and pump beam of squeezing,
respectively. We consider the case where the squeezing is
generated by a degenerate parametric amplifier and assume
ωsq = 2ωd [52]. In the rotating coordinate frame of frequency
ωd , the master equation is given by [34,35]

ρ̇ = −i[−�a†a + iE (a − a†) + iη(a2e−iθ − a†2eiθ ), ρ]

+ γ1D[a†]ρ + γ2D[a2]ρ, (12)

where � = ωd − ω0 is the frequency detuning of the har-
monic driving from the oscillator, E is the intensity of the
harmonic driving, ηeiθ is the squeezing parameter and γ1 and
γ2 are the decay rates for negative damping and nonlinear
damping, respectively. The harmonic driving is represented
by a constant E , because a coordinate frame rotating with
the driving frequency ωd is used. Note that the Lindblad term
with the quadratic annihilation operator, D[a2], is essentially
important in giving rise to the limit-cycle oscillations.

We assume that γ2 is sufficiently small and of O(ε), for
which the semiclassical approximation is valid, and represent
γ2 as γ2 = εγ1γ2

′ using a dimensionless parameter γ2
′ of

O(1). In this setting, the size of the stable limit-cycle solution
in Eq. (12) in the classical limit is O(1/

√
ε), while we have

implicitly assumed it to be O(1) in the derivation of Eq. (5).
Therefore we introduce a rescaled annihilation operator a′ and
the corresponding classical variable α′ (α′ = (α′, α′∗) in the
vector representation) as a′|α′〉 = √

εa|√εα〉, and represent
the parameters as � = γ1�

′, E = √
εγ1E ′, and η = δγ1η

′,
where �′, E ′, and η′ are dimensionless parameters of O(1).
By this rescaling, the size of the limit cycle becomes O(1)
and the parameter δ determines the relative intensity of the
squeezing.
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The real-valued representation X = (x′, p′)T = (Re α′, Im α′)T of Eq. (4) after rescaling is then obtained as

dX =
(

1
2 x′ − �′ p′ − γ ′

2x′(x′2 + p′2) − εE ′ − 2δη′(x′ cos θ + p′ sin θ )
1
2 p′ + �′x′ − γ ′

2 p′(x′2 + p′2) + 2δη′(p′ cos θ − x′ sin θ )

)
dt ′ + √

εG(X )dW ′, (13)

where dt ′ = γ1dt and dW ′ = √
γ1dW . The noise intensity

matrix is explicitly given by

G(X ) =
⎛
⎝
√

(1+R′
1 )

2 cos χ ′
1

2

√
(1−R′

1 )
2 sin χ ′

1
2√

(1+R′
1 )

2 sin χ ′
1

2 −
√

(1−R′
1 )

2 cos χ ′
1

2

⎞
⎠, (14)

with R′
1eiχ ′

1 = −(γ ′
2(x′ + ip′)2 + 2δη′eiθ ). Further details of

the derivation can be found in the Appendix D.

B. Weak squeezing

First, we consider the case of weak squeezing with δ = ε.
The rescaled system and perturbation Hamiltonians are given
by

H = −�′a′†a′,

εH̃ = ε{iE ′(a′ − a′†) + iη′(a′2e−iθ − a′†2eiθ )}. (15)

For this system, we obtain F(X ) = (x′/2 − �′ p′ − γ ′
2x′(x′2 +

p′2), p′/2 + �′x′ − γ ′
2 p′(x′2 + p′2))T . The perturbation

is represented by q(X , t ) = (−E ′ − 2η′(x′ cos θ +
p′ sin θ ), 2η′(p′ cos θ − x′ sin θ ))T . Note that the vector
field F(X ) in this case is simply a normal form of the
supercritical Hopf bifurcation. A classical nonlinear oscillator
described by this F(X ) is known as the Stuart-Landau (SL)
oscillator [2] (which is different from the classical vdP
oscillator) and it is analytically solvable.

The stable limit cycle of the SL oscillator is given by

X 0(φ) =
√

1

2γ ′
2

(
cos φ

sin φ

)
(16)

as a function of phase φ = ωt , where the frequency is given
by ω = �′. The basin B of this limit cycle is the whole
(x′, p′)-plane except (0, 0). The phase function 
(X ) of this
limit cycle can be expressed as 
(x′, p′) = tan−1(p′/x′) [7],
which gives φ̇ = 
̇(x′, p′) = ω. The PSF Z(φ) and Hessian
matrix Y (φ) can be obtained by calculating the gradients of
the phase function 
(X ) at X = X 0(φ) on the limit cycle as

Z(φ) =
√

2γ ′
2

(− sin φ

cos φ

)
,

Y (φ) = 2γ ′
2

(
sin 2φ − cos 2φ

− cos 2φ − sin 2φ

)
. (17)

In this case, the additional term g(φ) in Eq. (5) and therefore
the frequency shift in Eq. (8) vanishes, i.e., ω̃ = ω. The
O(ε

√
ε) terms in the noise intensity G(φ) given by Eq. (14)

are neglected.
From these results, the phase equation in Eq. (5) for the

quantum vdP oscillator driven by weak harmonic driving and

squeezing is explicitly given by

dφ = {�′ +
√

2ε

√
γ ′

2E ′ sin φ + 2εη′ sin(2φ − θ )}dt ′

+√
ε

√
3γ ′

2

2
dW ′ (18)

in the lowest-order approximation, where dW ′ = √
γ1dW .

Using the probability density function P(φ) of the phase φ

described by the FPE (10) corresponding to Eq. (18), the
approximate density matrix, Eq. (11), is explicitly given by

ρ ≈
∫ 2π

0
dφP(φ)

∣∣∣∣
√

γ1

2γ2
eiφ

〉〈√
γ1

2γ2
eiφ

∣∣∣∣. (19)

C. Strong squeezing

Next, we consider the case of strong squeezing with δ = 1
and incorporate it into the system Hamiltonian. The rescaled
system and perturbation Hamiltonians are given by

H = −�′a′†a′ + iη′(a′2e−iθ − a′†2eiθ ),

εH̃ = εiE ′(a′ − a′†). (20)

We obtain F(X ) = (x′/2 − �′ p′ − γ ′
2x′(x′2 + p′2) −

2η′(x′ cos θ + p′ sin θ ), p′/2 + �′x′ − γ ′
2 p′(x′2 + p′2) +

2η′(p′ cos θ − x′ sin θ ))T with extra terms due to squeezing,
characterized by the parameter η′. When �′ > 2η′ (i.e.,
� > 2η), this vector field F(X ) possesses a stable
limit-cycle solution X 0(t ) in the classical limit. Due to
the strong squeezing, this limit cycle is asymmetric and
the angular velocity of the oscillator state is nonuniform.
At �′ = 2η′, this limit cycle disappears via a saddle-node
bifurcation on invariant circle. The perturbation is given by
q(X , t ) = (−E ′, 0).

In this case, the system is not analytically solvable, but
we can numerically obtain the limit-cycle solution X 0(φ) =
(x0(φ), p0(φ))T , natural frequency ω, PSF Z(φ), and Hessian
matrix Y (φ), and use them in the phase equation in Eq. (5).
The density matrix can be approximately reconstructed from
Eq. (11), where α0(φ) = x0(φ) + ip0(φ). In this case, the
frequency shift does not vanish generally and the effective
frequency ω̃ is slightly different from ω in the classical limit
without noise.

An example of the limit cycle in the classical limit is shown
in Fig. 3(c), and the PSF is shown in Figs. 3(d) and 3(e).
The effective frequency is evaluated as ω̃ = 0.7743 at the
parameter values given in Fig. 3, which is slightly different
from the natural frequency ω = 0.7746 of the system in the
classical limit without noise. From the phase equation, we
can obtain the stationary phase distribution P(φ) by solving
the corresponding FPE and reconstruct the density matrix as a
mixture of the coherent states on the limit cycle.
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FIG. 2. Results for the quantum van der Pol oscillator un-
der harmonic driving [(a) and (b)] and under weak squeezing
[(c) and (d)]. [(a) and (c)] Wigner distributions of ρsc recon-
structed from the reduced phase equation and [(b) and (d)] Wigner
distributions of ρqm obtained by direct numerical simulation of
the original master equation. In (a) and (b), weak harmonic
driving with (�, γ2, ηeiθ , E )/γ1 = (0.05, 0.05, 0,

√
0.1) is applied,

and in (c) and (d), weak squeezing with (�, γ2, ηeiθ , E )/γ1 =
(0.05, 0.05, 0.025, 0) is applied. The fidelities between ρsc and ρqm

are F = 0.963 in [(a) and (b)] and F = 0.982 in [(c) and (d)],
respectively. Note that the figures are drawn using x and p before
rescaling.

D. Reconstruction of density matrices

To test the validity of the reduced phase equation, we
compare the density matrix ρsc, which is reconstructed from
Eq. (11) by using P(φ) obtained from the FPE in Eq. (10)
associated with the reduced phase equation in Eq. (5), with the
true density matrix ρqm, which is obtained by direct numerical
simulation of master equation in Eq. (12), in the steady state
of the system. We use the fidelity F = Tr [

√√
ρscρqm

√
ρsc]

[55] to quantify the similarity between ρsc and ρqm. Numerical
simulations of the master equation have been performed by
using QuTiP [56] numerical toolbox.

Figures 2(a)–2(d) show the steady-state Wigner distribu-
tions corresponding to ρsc and ρqm under the weak harmonic
driving or the squeezing. In both cases, the distribution is
localized along the limit cycle in the classical limit, where
the width of the distribution is determined by the intensity of
the quantum noise. In Figs. 2(a) and 2(b), only the harmonic
driving is given as the perturbation (η = 0), while in Figs. 2(c)
and 2(d), only the squeezing is given as the perturbation
(E = 0). It can be seen that the true density matrix ρqm is ac-
curately approximated by the density matrix ρsc reconstructed
from the phase equation in both cases. The fidelity is F =
0.963 in the former case and F = 0.982 in the latter case.

It is notable that the Wigner distribution is localized around
one phase point on the limit cycle in Figs. 2(a) and 2(b), which
indicates that there is a 1:1 phase locking [4] between the
oscillator and the harmonic driving; In the classical limit, the
phase is locked to the point where the deterministic part of

Eq. (18) vanishes, and thus the Wigner distribution takes large
values around such a point. Similarly, the Wigner distribution
is localized around two phase points on the cycle shown in
Figs. 2(c) and 2(d), because the frequency of the squeezing
is twice that of the harmonic driving and 1:2 phase locking
occurs, as can be expected from the third term in the determin-
istic part of Eq. (18) representing the effect of the squeezing.
Note that Fig. 2 is depicted in the rotating coordinate frame of
frequency ωd and the locked phase rotates with frequency ωd

in the original coordinate.
Figures 3(a) and 3(b) show the Wigner distributions in the

case of strong squeezing and weak harmonic driving, where
all quantities are calculated numerically. In this case, the
system exhibits a stable limit cycle in the rotating coordinate
frame of frequency ωd , and constant driving is applied on the
system as in Eq. (13). The limit cycle in the classical limit
is shown in Fig. 3(c), the x and p components of the PSF
obtained from Eq. (7) are shown in Figs. 3(d) and 3(e), the
xx, pp, xp components of the Hessian matrix are shown in
Figs. 3(f), 3(g) and 3(h) (the px component is equal to the xp
component), and the additional term g(φ) is shown in Fig. 3(i).
The origin of the phase φ = 0 is chosen as the intersection of
the limit cycle and the x′ axis with x′ > 0.

It can be seen that the limit cycle in the classical limit
is asymmetric due to the effect of the strong squeezing.
The density matrix ρsc can be reconstructed from the phase
distribution P(φ) obtained numerically. As shown in Figs. 3(a)
and 3(b), the true density matrix ρqm is well approximated by
ρsc with fidelity F = 0.976. In Figs. 3(a) and 3(b), the Wigner
distribution is concentrated around the stable phase point
where the deterministic part of the phase equation vanishes.
Thus the reduced phase equation well reproduces the density
matrix of the original quantum system also in this case. Note
that the reconstructed density matrix ρsc is slightly more
concentrated than the original density matrix ρqm in Figs. 2
and 3. This is because ρsc is approximated as a weighted
mixture of coherent states with minimum uncertainty along
the limit cycle.

E. Reconstruction of spectra and observed frequencies

The power spectrum Sqm of the original quantum system in
the steady state is defined as

Sqm(ω) =
∫ ∞

−∞
dτeiωτ Rqm(τ ),

Rqm(τ ) = 〈a†(τ )a(0)〉qm − 〈a†(τ )〉qm〈a(0)〉qm, (21)

where Rqm is the autocovariance and 〈A〉qm = Tr [Aρqm] rep-
resents the expectation value of an operator A with respect to
the steady state density matrix ρqm obtained from the master
equation in Eq. (12). From the reduced phase equation, using
the correspondence between the operators and c numbers in
the P representation, the power spectrum in Eq. (21) under the
semiclassical approximation can be reconstructed as

Ssc(ω) =
∫ ∞

−∞
dτeiωτ Rsc(τ ),

Rsc(τ ) = 〈α∗
0 (φ2(τ ))α0(φ1(0))〉sc

−〈α∗
0 (φ2(τ ))〉sc〈α0(φ1(0))〉sc. (22)
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FIG. 3. Results for the quantum van der Pol oscillator under strong squeezing and weak harmonic driving with parameters
(�, γ2, ηeiθ , E )/γ1 = (0.8, 0.05, −0.1i,

√
0.1). (a) Wigner distribution of ρsc reconstructed from the reduced phase equation. (b) Wigner

distribution of ρqm obtained by direct numerical simulation of the original master equation. (c) Limit cycle X 0(φ) = (x0(φ), p0(φ))T in the
classical limit. [(d) and (e)] The x = Re α and p = Im α components of the PSF Z(φ). [(f)–(h)] The xx, pp, and xp components of the Hessian
matrix Y (φ). (i) Additional term g(φ) arising form the change of variables. In (a) and (b), the fidelity between ρsc and ρqm is F = 0.976.

Here, Rsc is the autocovariance reconstructed from the
phase equation, the mean of a 2π -periodic function
B(φ) is given by 〈B(φ)〉sc = ∫ 2π

0 dφB(φ)Psc(φ), and
the autocorrelation is given by 〈B(φ2(τ ))B(φ1(0))〉sc =∫ 2π

0 dφ1
∫ 2π

0 dφ2(B(φ2(τ ))B(φ1(0)))P(φ2, τ |φ1, 0)Psc(φ1),

where Psc(φ) is a steady phase distribution and P(φ2, t2|φ1, t1)
is a transition probability. Both of these probability
distributions can be calculated from Eq. (10). The observed
frequency ωqm of the original system and its approximation
ωsc by the phase reduction can be evaluated from the
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FIG. 4. Power spectra [(a)–(c)] and observed frequencies [(d)–(f)] obtained by direct numerical simulations of the master equation (red
solid lines) and obtained from the reduced phase equation (blue dotted lines). [(a) and (d)] Weak harmonic driving without squeezing,
(γ2, ηeiθ , E )/γ1 = (0.05, 0,

√
0.1). � = 0.1 in (a). [(b) and (e)] Weak squeezing without harmonic driving, (γ2, ηeiθ , E )/γ1 = (0.05, 0.025, 0).

� = 0.1 in (b). [(c) and (f)] Strong squeezing and weak harmonic driving, (�, γ2, ηeiθ , E )/γ1 = (0.8, 0.05, −0.1i,
√

0.1). �e = 0.1 in (c). In
(d)–(f), the black-dotted lines correspond to the unperturbed cases.
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maxima of the spectra as ωqm,sc = arg maxω Sqm,sc(ω),
respectively.

First, we consider the cases with weak squeezing.
Figure 4(a) shows the two power spectra Sqm and Ssc for the
case where only the harmonic driving is given, and Fig. 4(b)
shows the spectra for the case with squeezing only. In both
cases, the true spectrum Sqm can be accurately approximated
by the reconstructed spectrum Ssc. The dependence of the
observed frequencies ωqm,sc on the parameter �, where �

determines the natural frequency of the limit cycle in the clas-
sical limit, is shown in Figs. 4(d) and 4(e). It can be confirmed
that ωqm is accurately approximated by ωsc in both cases. The
oscillator strictly synchronizes to the external driving when
the frequency of the oscillator vanishes in the classical limit,
because the harmonic driving acts as a constant force in the
rotating frame. Here, strict synchronization is prevented by
the quantum noise and the observed frequencies ωqm,sc do
not vanish completely; however, the tendency toward synchro-
nization can be clearly seen from the decrease in the observed
frequency compared to that of the unperturbed case.

Next, we consider the case with strong squeezing, where
the system exhibits asymmetric limit cycle in the classical
limit when � > 2η. We cannot analyze synchronization with
the harmonic driving as a stationary problem by using a rotat-
ing coordinate frame of frequency ωd , because the limit cycle
is asymmetric and the variation in � does not correspond
directly to the variation in ωd . We thus explicitly apply har-
monic driving with periodic amplitude modulation E cos ωet
of frequency ωe and measure ωqm and ωsc as functions of
�e = ω − ωe for 0 � �e � 0.1 (ω − 0.1 � ωe � ω), where
ω = 0.7746.

In this case, we obtain a periodic (cyclostationary) solution
of period Te = 2π/ωe instead of a stationary solution. As
shown in Fig. 5(a), the quantum-mechanical averages 〈x〉 and
〈p〉 of the position and momentum operators x = (a + a†)/2
and p = −i(a − a†)/2 exhibit steady periodic dynamics after
the initial transient. Here, the initial condition is a coherent
state |α0(φ = 0)〉, where α0(φ = 0) is a point on the limit
cycle with φ = 0. Figures 5(b)–5(e) show snapshots of the
Wigner distributions in the periodic state, where the system
evolves as (b) → (c) → (d) → (e) → (b) (see supplemental
video for the continuous evolution [57]). The tendency toward
synchronization can be clearly observed from the existence of
the dense region co-rotating with the external forcing.

We denote the quantum and approximated autocovariance
functions at a given time te (0 � te < Te) of the steady state
oscillation as Rte

qm,sc(τ ), where Rte
qm(τ ) is calculated by using

a density matrix ρqm(te) at time te and Rte
sc(τ ) is calculated by

using a phase distribution Psc(φ, te) at time te, respectively, in
the steadily oscillating state. Then we use the averaged power
spectra S̄qm,sc(ω) = ∫∞

−∞ dτeiωτ
∫ Te

0 dteRte
qm,sc(τ )/Te to evalu-

ate the observed frequencies relative to the frequency of the
amplitude modulation as ω̄qm,sc = arg maxωS̄qm,sc(ω) − ωe.
Figures 4(c) and 4(f) compare the averaged spectra S̄qm,sc(ω)
and observed frequencies ω̄qm,sc obtained by direct numerical
simulation of the original master equation and by the approx-
imate phase equation, respectively. It can be seen that the
spectrum and observed frequency obtained from the original
master equation are accurately reproduced by those obtained
from the approximate phase equation. Thus, by using the
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FIG. 5. Synchronization of a quantum vdP oscillator subjected
to harmonic driving with periodic amplitude modulation. (a) Evo-
lution of the averages 〈x〉 and 〈p〉 from a coherent-state initial
condition. [(b)–(e)] Snapshots of the Wigner distributions in the
periodic steady (cyclostationary) state at time t = 89.5 (b), 91.8 (c),
94.1 (d), and 96.4 (e), respectively. The parameters are given by
(�, γ2, ηeiθ , E , )/γ1 = (0.8, 0.05, −0.1i,

√
0.1) and �e = 0.1.

reduced phase equation, we can approximately reconstruct the
spectrum and observed frequency of the original system also
in this case.

IV. CONCLUDING REMARKS

We have developed a general framework of the phase
reduction theory for quantum limit-cycle oscillators under
the semiclassical approximation and confirmed its validity
by analyzing synchronization dynamics of the quantum vdP
model. The proposed framework can approximately charac-
terize the dynamics of a quantum nonlinear oscillator by
using a simple classical phase equation, which would serve
as a starting point for analyzing synchronization of quantum
nonlinear oscillators under the semiclassical approximation.
Although we have only analyzed a single-oscillator problem
with a single degree of freedom in this study, the developed
framework can be directly extended to two or more quantum
oscillators with weak coupling by using standard methods
from the classical phase reduction theory. Analysis of large
many-body systems and the study of their collective dynamics
are of particular interest [24,29,30,47,48].

In this study, we have employed the P representation for
formulating the semiclassical phase reduction theory; how-
ever, other quasiprobability distributions can also be used for
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the formulation. Detailed comparisons of the results between
different representations, including the positive-P represen-
tation which is necessary to treat negative-definite diffusion
matrices [51], will be discussed in our forthcoming studies.
Also, analysis on the genuine quantum signature of a quantum
limit-cycle oscillator, which, for instance, can be measured by
the negativity of Wigner quasiprobability distributions [37,41]
as observed in the steady state of a quantum vdP oscillator
with a strong Kerr drive and external drive [37], could be
performed via an extended version of the developed phase
reduction theory.

Recently, the phase reduction theory has been applied
to control and optimization of synchronization dynamics in
classical nonlinear oscillators [58–63]. In classical dissipative
systems, the phase reduction theory has already been used
in technical applications of synchronization such as in the
ring laser gyroscope [64,65], phase-locked loop [4,66], and
Josephson voltage standard [4,67,68]. The quantum version
of these applications, as well as the recent demonstrations
[28,43], could be systematically investigated via the semiclas-
sical phase reduction theory developed in the present study.
These subjects will also be discussed in our forthcoming
studies.
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APPENDIX A: EXPLICIT FORM OF β(α)

In this section, we derive an explicit expression of β(α)
in Eq. (3). The diffusion matrix of the FPE in Eq. (2) in the
complex representation is given by

D(α) = β(α)β(α)T =
(

D11(α) D12(α)
D21(α) D22(α)

)
∈ C2×2, (A1)

where D22(α) = D∗
11(α) and D12(α) = D21(α). The nondiag-

onal element D12(α) = D21(α) is real and positive, because it
is a constant of cross diffusion described by ∂2P(α, t )/∂α∂α∗
and it can be obtained as an absolute value of a complex
variable.

We rewrite the FPE in Eq. (2) corresponding to the
SDE in Eq. (4) in the real-valued representation, i.e., for
the quasiprobability distribution P(X , t ) with X = (x, p)T =
(Re α, Im α)T , as

∂

∂t
P(X , t ) =

[
− ∂

∂X
{F(X ) + εq(X , t )}

+ 1

2

∂2

∂X 2 D(X )

]
P(X , t ), (A2)

where

∂

∂α
= 1

2

(
∂

∂x
− i

∂

∂ p

)
,

∂

∂α∗ = 1

2

(
∂

∂x
+ i

∂

∂ p

)
. (A3)

The real-valued diffusion matrix D(X ) in the above FPE and
the complex-valued diffusion matrix D(α) are related as

D(X ) = 1

4

(
1 1
−i i

)
D(α)

(
1 −i
1 i

)

= 1

2

(
Re D11(α) + D12(α) Im D11(α)

Im D11(α) −Re D11(α) + D12(α)

)

∈ R2×2 (A4)

and

D(α) =
(

1 i
1 −i

)
D(X )

(
1 1
i −i

)
. (A5)

By denoting the matrix components of D(α) in the po-
lar representation as D11(α) = R11(α)eiχ (α) and D12(α) =
R12(α), where R11(α), R22(α) � 0 and χ (α) ∈ [0, 2π ), the
eigenvalues λ±(X ) and eigenvectors v±(X ) of D(X ) can be
expressed as

λ±(X ) = 1

2
(R12(α) ± R11(α)),

v+(X ) =
(

cos χ (α)
2

sin χ (α)
2

)
, v−(X ) =

(
sin χ (α)

2

− cos χ (α)
2

)
, (A6)

and D(X ) can be decomposed as

D(X ) = (v+(X ) v−(X ))

(
λ+(X ) 0

0 λ−(X )

)(
v+(X )T

v−(X )T

)
.

(A7)

Thus G(X ) is given by

G(X ) = (v+(X ) v−(X ))

(√
λ+(X ) 0

0
√

λ−(X )

)
=
⎛
⎝
√

(R12(α)+R11(α))
2 cos χ (α)

2

√
(R12(α)−R11(α))

2 sin χ (α)
2√

(R12(α)+R11(α))
2 sin χ (α)

2 −
√

(R12(α)−R11(α))
2 cos χ (α)

2

⎞
⎠, (A8)

and β(α) is obtained from G(X ) as

β(α) =
(

1 i
1 −i

)
G(X ) =

⎛
⎝
√

(R12(α)+R11(α))
2 eiχ (α)/2 −i

√
(R12(α)−R11(α))

2 eiχ (α)/2√
(R12(α)+R11(α))

2 e−iχ (α)/2 i
√

(R12(α)−R11(α))
2 e−iχ (α)/2

⎞
⎠. (A9)

The assumption in the main text that the diffusion matrix is
always positive semidefinite along the limit cycle is equivalent
to the assumption that λ−(X 0(φ)) � 0, that is, R12(α0(φ)) �

R11(α0(φ)) is satisfied for all φ, because λ+(X ) is always
positive. With this assumption, if the initial state is given in
the form of Eq. (11), for instance, by a pure coherent state
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ρ = |α0(φ0)〉〈α0(φ0)| at a given phase point φ0 on the limit
cycle, the state always remains in the two-dimensional phase
space of the classical variables.

APPENDIX B: DERIVATION OF THE PHASE EQUATION

In this section, we give a detailed derivation of the phase
equation in Eq. (5). The asymptotic phase function 
(X ) :
B ⊂ R2×1 → [0, 2π ) introduced in the main text satisfies

F(X ) · ∇
(X ) = ω (B1)

in the basin B of the limit cycle, where ∇
 ∈ R2×1 indicates
the gradient of 
 with respect to X . Using this 
(X ), we
define the phase φ of the oscillator state X as φ = 
(X ). As
long as X evolves in B, φ̇ = 
̇(X ) = Ẋ · ∇
(X ) = F(X ) ·
∇
(X ) = ω holds. Recently, it has been shown that this
phase function is closely related to an eigenfunction of the
Koopman operator of the system Ẋ = F(X ) associated with
the eigenvalue iω [69].

When X obeys the Ito SDE in Eq. (4), we obtain an Ito
SDEs for the phase φ as

dφ = [(∇
(X )) · (F(X ) + εq(X , t ))

+ 1
2εTr{G(X )T (∇T ∇
(X ))G(X )}]dt

+√
ε(∇
(X )) · (G(X )dW )

= [ω + ε(∇
(X )) · q(X , t )

+ 1
2εTr{G(X )T (∇T ∇
(X ))G(X )}]dt

+√
ε(G(X )T ∇
(X )) · dW , (B2)

where the third term in the drift part arises from the change of
the variables by the Ito formula and ∇T ∇
 ∈ R2×2 represents
the Hessian matrix of 
(X ) with respect to X . This equation
is still not closed in the phase variable φ, because each term
on the right-hand side depends on X .

When the perturbation and quantum noise are weak, the
deviation of the system state X from the limit cycle is small
and of the order of O(

√
ε) because the limit cycle is expo-

nentially stable and the system state is subjected to Gaussian-
white noise. Thus, in the lowest-order approximation, we can
approximate the state X by a state X 0(φ) on the limit cycle
as X (t ) = X 0(φ(t )) + O(

√
ε). We then obtain an Ito SDE for

the phase variable φ,

dφ = {ω + ε f (φ, t ) + εg(φ)}dt + √
εh(φ) · dW , (B3)

which is correct up to O(ε) in the drift term and up to O(
√

ε)
in the noise intensity, where

f (φ, t ) = ∇
(X )|X=X 0(φ) · q(X 0(φ), t ) ∈ R (B4)

represents the effect of the perturbation on φ,

h(φ) = G(X 0(φ))T ∇
(X )|X=X 0(φ) ∈ R2×1 (B5)

represents the effect of the quantum noise on φ, and

g(φ) = 1
2 Tr{G(X 0(φ))T (∇T ∇
|X=X0(φ) )G(X 0(φ))} (B6)

represents a term arising from the change of the variables,
respectively.

We denote the gradient vector (PSF) and Hessian matrix of
the phase function 
(X ) evaluated at X = X 0(φ) on the limit

cycle as Z(φ) = ∇
|X=X0(φ) and Y (φ) = ∇T ∇
|X=X 0(φ), re-
spectively. The components of the PSF and Hessian matrix
∇T ∇
|X=X0(φ) are explicitly given by

Zi(φ) = ∂
(X )

∂Xi

∣∣∣∣
X=X 0(φ)

,

(∇T ∇
|X=X0(φ) )i j = ∂2
(X )

∂Xi∂Xj

∣∣∣∣
X=X 0(φ)

, (B7)

for i, j = 1, 2, respectively.
It is well known in the classical phase reduction theory

[3,7–9] that Z(φ) is given by a 2π -periodic solution to the
following adjoint equation and normalization condition:

ω
d

dφ
Z(φ) = −J(φ)T Z(φ), Z(φ) · F(X 0(φ)) = ω. (B8)

It is also known [53,54] that the Hessian matrix Y (φ) of the
phase function, evaluated at X = X 0(φ) on the limit cycle, is
given by a 2π -periodic solution to a differential equation

ω
d

dφ
Y (φ) = −J(φ)T Y (φ) − Y (φ)J(φ) − Z(φ) ◦ K(φ),

(B9)

which satisfies a constraint

Z(φ) · J(φ)F(X 0(φ)) + F(X 0(φ)) · Y (φ)F(X 0(φ)) = 0.

(B10)

In the above equations, J(φ) ∈ R2×2 is a Jacobian matrix
of F(X ) at X = X 0(φ) and K(φ) ∈ R2×2×2 is a third order
tensor, respectively, whose components are given by

J (θ )i j = ∂Fi

∂Xj

∣∣∣∣
X=X0(θ )

, K (θ )i jk = ∂2Fi

∂Xj∂Xk

∣∣∣∣
X=X 0(θ )

,

(B11)

and the matrix components of the product Z(φ) ◦ K(φ) ∈
R2×2 are given by

[Z(φ) ◦ K(φ)] j,k =
2∑

i=1

Zi(φ)Ki jk (φ) (B12)

for i, j, k = 1, 2.
Thus, when the noise and perturbations are sufficiently

weak, we obtain an approximate Ito SDE for the phase vari-
able as

dφ = {ω + ε f (φ, t ) + εg(φ)}dt + √
εh(φ) · dW (B13)

at the lowest order, which corresponds to Eq. (5) in the main
text. It can be shown that the amplitude effect does not enter
the phase dynamics at the lowest order [70]. As Eq. (B13)
is an Ito SDE, using the property of the Wiener process, the
noise term can be rewritten as

√
εh(φ) · dW = √

εh(φ)dW, (B14)

where h(φ) =
√∑2

i=1(h(φ))2
i and W (t ) is a one-dimensional

Wiener process.
The errors in the evolution of the phase variable resulting

from the lowest-order approximation above are O(ε2) in
the drift term and O(ε) in the noise intensity, respectively.
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Therefore, the error in the mean of φ from the true value grows
with time as O(ε2t ), and the error in the variance of φ grows
as O(ε2t ). Thus, these errors in the phase dynamics remain
O(ε) up to t = O(1/ε).

APPENDIX C: AVERAGED PHASE EQUATION

In this section, we derive the averaged phase equation,
Eq. (9), by using the near-identity transform. Although Eq. (5)
is a correct phase equation for the phase φ in the lowest-order
approximation, it has an additional function g(φ) in the drift
term, which adds tiny periodic fluctuations to the deterministic
part. By further introducing a new phase ψ that is only slightly
different from φ, we can eliminate this term and obtain a
simpler SDE,

dψ = {ω̃ + ε f (ψ, t )}dt + √
εh(ψ )dW, (C1)

where f (ψ, t ) = Z(ψ ) · q(ψ, t ), W (t ) is a one-dimensional
Wiener process, and h(ψ ) is a 2π -periodic function of ψ .
Here, the new phase ψ is defined from φ by a near-identity
transform as φ = ψ + εn(ψ ), where n(ψ ) is a 2π -periodic
function with n(0) = 0. Using this transformation, the ad-
ditional term g(φ) in Eq. (5) can be renormalized into the
frequency term as

ω̃ = ω + ε

2π

∫ 2π

0
g(ψ ′)dψ ′, (C2)

where ω̃ is the effective frequency of the system. As ε is
assumed to be sufficiently small, the transformation between
the two variables φ and ψ is invertible. Thus the qualita-
tive properties of the dynamics predicted by the two-phase
equations, such as whether synchronization occurs or not, are
invariant. In the classical phase-reduction theory, the O(ε)
difference between the phase variables due to the near-identity
transformation or averaging is often neglected and both phases
are considered to be the same. Below, we derive the simplified
phase equation in Eq. (C1) from the original phase equation,
Eq. (5) or (B13), by using the near-identity transform [71].

In Eq. (B13), the function g(φ) contains the Hessian ma-
trix Y (φ) of 
(X ) on the limit cycle, which is typically
not included in the phase equation for classical limit-cycle
oscillators and gives a tiny but complex periodic contribution
to the phase dynamics. To eliminate this term, we renormalize
it into the frequency term. For this purpose, we consider a
near-identity transform from the original phase φ to a new
phase ψ ,

φ = ψ + εn(ψ ), (C3)

where the transformation function n(ψ ) is a smooth 2π -
periodic function of ψ satisfying n(0) = 0, and assume that
ψ obeys an Ito SDE of the form

dψ = {ω + ε� + ε f (ψ, t )}dt + √
εh(ψ )dW (C4)

in the lowest-order approximation, which does not contain a
term corresponding to g(φ) but has a small shift ε� in the
frequency. From this SDE, we obtain an Ito SDE for φ by
using the Ito formula as

dφ =
[

∂φ

∂ψ
{ω + ε� + ε f (ψ, t )} + 1

2
εh(ψ )2 ∂2φ

∂ψ2

]
dt

+√
ε

∂φ

∂ψ
h(ψ )dW

=
[

(1 + εn′(ψ )){ω + ε� + ε f (ψ, t )}

+ 1

2
εh(ψ )2(εn′′(ψ ))

]
dt + √

ε(1 + εn′(ψ ))h(ψ )dW

≈ [ω + ε f (ψ, t ) + ε� + εωn′(ψ )]dt + √
εh(ψ )dW,

(C5)

where we omitted the tiny terms of O(ε2) in the drift term
and O(ε3/2) in the noise intensity. The replacement of φ by
ψ in the functions f and h also results in errors of O(ε2)
and O(ε3/2) in the drift term and noise intensity, respectively,
which can also be neglected.

The above equation coincides with the original Eq. (B13)
if n(ψ ) satisfies

� + ωn′(ψ ) = g(φ). (C6)

As g(φ) = g(ψ ) + O(ε), the equation for n(ψ ) is obtained at
the lowest order as

d

dψ
n(ψ ) = g(ψ ) − �, (C7)

which gives

n(ψ ) =
∫ ψ

0
dψ ′[g(ψ ′) − �], (C8)

where n(0) = 0 is used. Moreover, as n(ψ ) is 2π -periodic,
n(2π ) = n(0) = 0 should hold, which determines the fre-
quency shift � as

ε� = ε

2π

∫ 2π

0
dψ ′g(ψ ′). (C9)

Thus, by introducing the near-identity transform, we obtain an
averaged phase equation

dψ = {ω̃ + ε f (ψ, t )}dt + √
εh(ψ )dW, (C10)

where ω̃ = ω + ε� is a renormalized, effective frequency.
This corresponds to Eq. (C1). The orders of errors caused by
the above near-identity transformation are O(ε2) in the drift
term and O(ε3/2) in the noise intensity. Therefore, the phase
equations in Eq. (B13) and (C10) are equally correct in the
lowest-order approximation and valid up to t = O(1/ε).

The frequency shift ε� can be evaluated by numerically
calculating the Hessian matrix of 
(X ) in g(ψ ) and integrat-
ing Eq. (C9), or alternatively by measuring ω̃ by numerically
evolving the SDE in Eq. (3) or Eq. (4) without perturbations.
In the examples used in the main text, the frequency shift ε�

is zero in the case of Eq. (18) with the symmetric limit cycle
with weak squeezing, and takes a tiny value in the case with
strong squeezing. In other applications, for example, in the
analysis of coupled identical limit-cycle oscillators without
external forcing, the precise value of ω̃ may not be required
(only the frequency difference matters). In such cases, one
may simply assume ω̃ ≈ ω and avoid the calculation of ε�.
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APPENDIX D: PHASE-SPACE REPRESENTATION
OF A QUANTUM vdP OSCILLATOR WITH HARMONIC

DRIVING AND SQUEEZING

1. Weak squeezing

Here, we derive a phase equation for a quantum vdP
oscillator with harmonic driving and squeezing. In the case of
weak squeezing with δ = ε, the rescaled system Hamiltonian
and the perturbation Hamiltonian are given by

H =−�′a′†a′, εH̃ =ε{iE ′(a′−a′†)+iη′(a′2e−iθ − a′†2eiθ )},
(D1)

respectively, where the squeezing term is included in the
perturbation. The functions A(α′), εA′(α′), and εD(α′) in the
quantum FPE are calculated as

A(α′) =
( (

1
2 + i�′)α′ − γ ′

2α
′∗α′2(

1
2 − i�′)α′∗ − γ ′

2α
′α′∗2

)
,

εA′(α′) = ε

(−E ′ − 2η′eiθα′∗

−E ′ − 2η′e−iθα′

)
, (D2)

and

εD(α′) = ε

(−γ ′
2α

′2 1

1 −γ ′
2α

′∗2

)
, (D3)

where the tiny terms of O(ε2) in εD(α′) are dropped. The
explicit form of β(α′) given by Eq. (A9) can be obtained from
Eq. (D3) as

β(α′) =
⎛
⎝ i

√
1+γ ′

2R′2

2 eiδ′
√

1−γ ′
2R′2

2 eiδ′

−i
√

1+γ ′
2R′2

2 e−iδ′
√

1−γ ′
2R′2

2 e−iδ′

⎞
⎠, (D4)

where the modulus R′ and argument δ′ of α′ is introduced
as α′ = R′eiδ′

. In the real-valued representation with X =
(x′, p′)T = (Re α′, Im α′)T , the functions F(X ), εq(X ), and√

εG(X ) are given by

F(X ) =
(

1
2 x′ − �′ p′ − γ ′

2x′(x′2 + p′2)
1
2 p′ + �′x′ − γ ′

2 p′(x′2 + p′2)

)
,

εq(X ) = ε

(−E ′ − 2η′(x′ cos θ + p′ sin θ )

2η′(p′ cos θ − x′ sin θ )

)
, (D5)

and

√
εG(X ) = √

ε

⎛
⎜⎝−
√

1+γ ′
2R′2

2 sin δ′
√

1−γ ′
2R′2

2 cos δ′

√
1+γ ′

2R′2

2 cos δ′
√

1−γ ′
2R′2

2 sin δ′

⎞
⎟⎠, (D6)

respectively.
As discussed in the main text, the deterministic part of

this equation, Ẋ = F(X ), is a normal form of the super-

critical Hopf bifurcation, also known as the Stuart-Landau
oscillator, and it is analytically solvable. The limit cy-
cle of this system in the classical limit can be obtained

as X 0(φ) =
√

1
2γ ′

2
(cos φ, sin φ)T with φ = ωt , or α′

0(φ) =√
1

2γ ′
2
(eiφ, e−iφ )T in the complex-valued representation, where

the natural frequency is given by ω = �′, and the frequency
shift ε� vanishes. From Eq. (D3), the eigenvalues of matrix
D(α) can be calculated as

λ±(X ) = 1
2 {R12(α′) ± R11(α′)} = 1

2 (1 ± γ ′
2|α′|2). (D7)

By plugging the limit-cycle solution X 0(φ) into this equation,
it can be seen that λ−(X 0(φ)) = 1

4 > 0 is satisfied for any φ

on the limit cycle and the diffusion matrix is always positive
semidefinite along the limit cycle, because the magnitudes
of the squeezing and nonlinear damping, which can cause
negative diffusion, are assumed to be sufficiently small.

2. Strong squeezing

In the case of strong squeezing with δ = 1, the rescaled
system Hamiltonian and the perturbation Hamiltonian are
given by

H = −�′a′†a′+iη′(a′2e−iθ−a′†2eiθ ), εH̃ = iεE ′(a′ − a′†),

(D8)

respectively, where the squeezing term is included in the
system Hamiltonian. The functions A(α′), A′(α′), and D(α′)
in the phase-space representation are given by

A(α′) =
( (

1
2 + i�′)α′ − γ ′

2α
′∗α′2 − 2η′eiθα′∗(

1
2 − i�′)α′∗ − γ ′

2α
′α′∗2 − 2η′e−iθα′

)
,

εA′(α′) = ε

(−E ′

−E ′

)
, (D9)

and

εD(α′) = ε

(
−(γ ′

2α
′2 + 2η′eiθ ) 1

1 −(γ ′
2α

′∗2 + 2η′e−iθ )

)
.

(D10)

The explicit form of β(α′) in this case is given by

β(α′) =

⎛
⎜⎝
√

(1+R′
2 )

2 eiχ ′
2/2 −i

√
(1−R′

2 )
2 eiχ ′

2/2

√
(1+R′

2 ))
2 e−iχ ′

2/2 i
√

(1−R′
2 )

2 e−iχ ′
2/2

⎞
⎟⎠, (D11)

where R′
2eiχ ′

2 = −(γ ′
2α

′2 + 2η′eiθ ). In the real-valued repre-
sentation with X = (x′, p′)T = (Re α′, Im α′)T , the functions
F(X ), εq(X ), and

√
εG(X ) are given by

F(X ) =
(

1
2 x′ − �′ p′ − γ ′

2x′(x′2 + p′2) − 2η′(x′ cos θ + p′ sin θ )
1
2 p′ + �′x′ − γ ′

2 p′(x′2 + p′2) + 2η′(p′ cos θ − x′ sin θ )

)
, εq(X ) = ε

(−E ′
0

)
, (D12)
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and

G(X ) =
⎛
⎝
√

(1+R′
2 )

2 cos χ ′
2

2

√
(1−R′

2 )
2 sin χ ′

2
2√

(1+R′
2 )

2 sin χ ′
2

2 −
√

(1−R′
2 )

2 cos χ ′
2

2

⎞
⎠, (D13)

respectively.
The deterministic part F(X ) gives an asymmetric limit

cycle when η > 0, which is difficult to solve analyti-
cally. However, we can still obtain the limit cycle X 0(φ)

numerically and use it to evaluate the PSF Z(φ), Hessian
matrix Y (φ), and the noise intensity G(φ), and use these
quantities in the phase equation. The PSF Z(φ) can be numeri-
cally calculated by the adjoint method, and the Hessian matrix
Y (φ) can be calculated by using a shooting-type numerical
algorithm.

When the squeezing is too strong, the diffusion matrix
can generally be negative definite on the limit cycle. We
choose parameter settings where the diffusion matrix is al-
ways positive semidefinite along the limit cycle in the main
text.
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