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Origin of Power-Law Spatial Correlations in Distributed Oscillators and Maps
with Nonlocal Coupling
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It is argued that power-law spatial correlation at short distances is a generic property of spatiotem
chaos exhibited by active dynamical elements coupled nonlocally. While this fact was suggested e
from some numerical analysis of coupled limit cycles, further evidence is provided here from an ana
for chaotic Rössler oscillators and logistic maps. A theory is presented to explain why such short-r
nonanalyticity of correlation with parameter-dependent exponent is so universal when the couplin
nonlocal. [S0031-9007(96)00359-6]

PACS numbers: 05.45.+b, 47.53.+n
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Existing theories on extended fields or large assemb
of active dynamical elements [1] usually assume lo
coupling or otherwise global coupling, while the stud
associated with nonlocal finite-range coupling are re
tively few. A typical model for the latter class of system
with a set of field variablesAsr, td has the form

≠A
≠t

­ FsAd 1 B . (1)

Here FsAd represents the vector field of a dynamic
element (limit cycle, chaotic oscillator, excitable un
etc.) at siter. The elements are now under the cont
of a self-generated fieldBsr, td ;

R
ŝsr 2 r0dAsr0, tddr0,

where ŝ is a nonlocal coupling matrix. Although th
elements are supposed in (1) to form a quasicontinu
distribution, spatial continuity of the field amplitude itse
will no longer be guaranteed once the coupling beco
nonlocal.

The term “nonlocal coupling” need not be taken lite
ally, because this form of coupling may result, e.g., fr
adiabatic elimination of rapidly diffusing components
systems of diffusion coupling, i.e., a typical local co
pling [2–4].

Consider the case that each dynamical element
resents a small-amplitude oscillator near a supercri
Hopf bifurcation. Then the center-manifold reducti
of (1) leads to a complex Ginzburg-Landau (CGL) ty
equation with nonlocal coupling [4]. It has the canoni
form

≠W
≠t

­ W 2 s1 1 ic2djW j2W 1 Ks1 1 ic1d sZ 2 Wd ,

(2)

whereW is a complex field with the real and imagina
parts denoted byX andY , respectively, andZ represents
the internal field. The following discussion will b
restricted to one-dimensional systems. Assuming ex
nential coupling, which is appropriate for the diffusio
mediated coupling mentioned in the last paragraph [2],
have Zsx, td ­

1
2

R`

2` exps2jx 2 x0jdW sx0, td dx0. The
0031-9007y96y76(23)y4352(4)$10.00
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coupling range has been taken to be the length unit.
all systems studied below, periodic boundary conditio
with period L ¿ 1 will be assumed. The other extrem
L ø 1 gives global coupling. The latter idealization ha
been instrumental in developing some important notio
such as synchronization transition [5–7], clusterin
[8–11], and collective chaos [12,13].

Local-coupling approximation (LCA) of (2) is valid
when W is sufficiently long waved, and this leads t
the standard CGL equation. Uniform oscillationW ­
exps2ic2td, which satisfies (2) and its LCA, becomes un
stable when1 1 c1c2 , 0, giving rise to turbulence in
both cases. Uniqueness of the turbulence in the non
cal CGL (2) manifests itself under such strong instab
ity that short-scale turbulent fluctuations come to inva
the domain inside the range of coupling. Since no cha
cteristic length exists below the coupling range down
the “atomic” scale, the turbulence here bears some
semblance to the developed fluid turbulence in the in
tial subrange. We now summarize our previous findin
[2–4] on this type of turbulence. Define spatial correl
tion Gsxd ­ kXs0dXsxd 1 Y s0dY sxdl and related quantity
gsxd ; Gs0d 2 Gsxd, wherek· · ·l stands for a long-time
average. Our numerical analyses of (2) proved the ex
tence of an open parameter range in whichgsxd for x ø 1
has the nonanalytic form

gsxd ­ g0 1 g1xa , sx fi 0d , (3)

where g0, g1, and a are nonnegative constants.g0 is
nonvanishing only below a certain coupling streng
Kcsc1, c2d. Since gs0d ­ 0 by definition, nonvanishing
g0 implies a discontinuity inG at x ­ 0. Physically,
this signifies individual motions or disintegration o
the amplitude profile into its microscopic constituent
Remarkably, the exponenta varies with K. Near Kc,
a is definitely less than 1, so that the peak ofGsxd is
cusped then. If0 , a , 1 andg0 ­ 0, then we have a
continuous but fractal amplitude profile of dimensionDf ,
and the relationDf ­ 2 2 a is suggested numerically
The casea ­ 1 does not still give a simple 1D profile
but the measured length diverges logarithmically as
© 1996 The American Physical Society
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minimum scale of measurement tends to zero. All th
results remain qualitatively the same when the oscill
type is changed to the Brusselator [3].

The main goal of this Letter is to present a theory
explain all these findings. Before doing this, however,
show briefly how one may even replace the limit cyc
with chaotic oscillators or maps to obtain essentially
same results.

Consider a quasicontinuous array of chaotic Rös
oscillators with exponential coupling

dXydt ­ 2Y 1 Z 1 Ksj 2 Xd ,

dYydt ­ X 1 0.3Y 1 Ksh 2 Y d ,

dZydt ­ 0.2 1 XZ 2 5.7Z 1 Ksz 2 Zd , (4)

wherejsxd ­
1
2

R
exps2jx 2 x0jdXsx0d dx0; h andz are

similarly defined in terms ofY andZ, respectively. With
the parameter values assumed, the individual Rö
oscillator gives a funnel attractor. Some character
profiles of the spatial correlationGsxd ; kXs0dXsxdl are
displayed in Fig. 1. The sharpness of the correla
peak changes with the coupling strengthK, and its jump
at x ­ 0 appears for weaker coupling. These are
features already seen for the model (2) [2–4]. Figu
demonstrates the power law ofgsxd with a changing
with K, where we employed the previous method [2]
estimatingg0 anda. It is difficult to locateKc accurately,
and our rough estimation givesKc ­ ,0.14 0.15.

We also studied exponentially coupled logistic maps
m
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FIG. 1. Some correlation profiles obtained numerically fro
an array of 4096 Rössler oscillators (4) withL ­ 16. The peak
positionGs0d is indicated by an arrow in (a) and (b).
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Xn11 ­ fsXnd 1 Kfhn 2 fsXndg , (5)

wherefsXd ­ 3.7Xs1 2 Xd andhnsxd ­
1
2

R
exps2jx 2

x0jdffXnsx0dg dx0. Figure 3 confirms thatgsxd obeys a
power law again. The correlation jump atx ­ 0 appears
below K . 0.24. Although not shown here with data
fractal amplitude profiles with the dimensionDf . 2 2 a

has been confirmed both for Rössler oscillators and logi
maps. Aforementioned logarithmic singularity at abo
a ­ 1 has also proved to be a common feature.

Although power-law spatial correlations may natura
be understood as a characteristic of those fluctuati
which occur in a scaleless regime, this fact alone can
lead us to the understanding of the more specific asp
of the phenomenon. In presenting our theory below,
shall use terminology appropriate for differential-equati
models like (1). Still the underlying physics may apply
coupled maps as well.

Equation (1) describes a single forced oscillator (lim
cycle or chaotic) if we regardBstd as a given time-
dependent quantity. One may then define space-time l
Lyapunov exponentlstd associated with each oscillato
l will fluctuate with B, and may alternate its sign
irregularly. Imagine a pair of oscillators with mutua
distancex ø 1, and assume that they share commonlstd.
The latter is true if their amplitude differenceysxd ;
Asxd 2 As0d remains sufficiently small. Obviously, we
have gsxd ­

1
2 kj yj2l, where the correlation has bee

defined byGsxd ­ kAs0dAsxdl.
Suppose at first thatlstd never becomes positive

Then the oscillators will synchronize with the motio
of B. The latter should be a smooth function ofx
with characteristic length ofOs1d because its definition
involves a spatial average over the distance ofOs1d.
Thus A will also behave smoothly in space, implyin
jysxdj ~ x or gsxd ~ x2 yielding a normal correlation.

In a different parameter regime,lstd may occasionally
become positive. Suppose that an unstable phase [lstd .

0] has been initiated after a long duration of stable pha
[lstd , 0]. Initially we have jyj ­ Osxd, but this small
FIG. 2. gsxd 2 g0 vs x in logarithmic scales for differen
coupling strengths. They are obtained numerically from
array of 4096 Rössler oscillators (4) withL ­ 16.
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FIG. 3. gsxd 2 g0 vs x in logarithmic scales for differen
coupling strengths. They are obtained numerically from
array of 4096 logistic maps (5) withL ­ 16.

quantity will grow exponentially. Suppose further that
a result of this unstable growth having continued for ti
t, jyj has becomeOs1d, i.e., some value independent
x. Then we havetsxd ~ jlnxj, which is a large numbe
for sufficiently smallx. Thus there may be little chanc
for such an event to occur. Still such rare events m
contribute to kjyj2l more significantly than the norma
contribution of Osx2d. The former contribution should
be proportional to the probability that the duration of
given unstable phase be longer thantsxd. If lstd forms a
Markoffian random process in long time scales, which
assume, this probability will be exponentially small lik
exps2btd for larget. Thus

gsxd ~ Psxd ~ exps2btd ~ xa , (6)

wherea andb are some positive constants. This give
rough sketch of how power-law spatial correlations ari

The above reasoning, being based on some vag
defined notions, is admittedly too crude, and is also una
to explain the origin of the correlation jump. What
intended here, however, is only to suggest that the po
law may result from a miraculous combination of tw
exponential functions of different physical origins, o
associated with a Markoffian random process and
other with the dynamics of unstable growth [14].

To make the argument more quantitative, we now try
derive an approximate equation fory to calculatekj yj2l.
The equation fory obtained from (1) generally takes th
form

dy
dt

­ L̂stdy 1 Ns yd 1 Dsx, td , (7)

where L̂stdy is the linearization ofFsAd about A ­
As0, td; Ns yd represents nonlinear terms, andD gives the
difference in the internal field between the two oscillato
i.e., Dsx, td ­ Bsx, td 2 Bs0, td . bstdx with randomly
fluctuatingbstd. Some drastic approximations on (7) a
now made. First, we replacey with a scalary, by which
we are keeping track only of the most unstable compon
4354
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of y. Concomitantly,L̂std is replaced withlstd. Assume
further that the effect ofN is basically to suppress th
unstable growth ofy. Similarly, the principal role ofD
term will be to keepy away from the zero value in the
decaying phase. These effects may be incorporated
introducing “hard walls” aty ­ y0 and D ; bstdx. By
neglecting thet dependence ofb, the walls may be set a
y ­ 1 andx in suitable scales ofy andx. Our equation
thus becomes

dy
dt

­ lstdy 1 e21f2us y 2 1d 1 usx 2 ydg,

e °! 01 , (8)

whereu denotes the Heaviside step function. Finally, w
simplify the random process oflstd by assuming thatlstd
takes only two valuesl1 and2l2 (l1,2 . 0) and that the
transitions2l2 ! l1 andl1 ! 2l2 occur with nonzero
probabilitiesp andq, respectively. The average Lyapuno
exponent thus becomesl ­ sl1p 2 l2qdysp 1 qd.

Fortunately, the above model can be solved exac
for the stationary distributionrssyd and hencek y2l. It
seems useful here to notice that the statistical ensem
of our system is equivalent to an ideal two-compone
gas, where the particles of one type are accelerated
the other type decelerated exponentially between the
walls, while the particle types themselves will also
interchanged spontaneously; a particle having reached
of the walls will stay there until its type is changed. W
will consider only the casel1 ­ l2 ­ 1 below because
there is nothing qualitatively new about more gene
cases. Let the normalized densityrs y, td be expressed
as

rs y, td ­ r1s y, td 1 r2s y, td

1 R1stdds y 2 1d 1 R2stdds y 2 xd , (9)

wherer6 are the densities between the walls, the suffix
1 and2 specifying components with positive and neg
tive l, respectively, and singular contributions from th
walls have been separated out as the last two terms. T
the respective parts of the distribution are governed by

≠r1y≠t ­ 2≠s yr1dy≠y 2 qr1 1 pr2 ,

≠r2y≠t ­ ≠s yr2dy≠y 1 qr1 2 pr2 ,

dR1ydt ­ r1s1d 2 qR1 ,

dR2ydt ­ xr2sxd 2 pR2 . (10)

Demandingqs
R

r1dy 1 R1d ­ ps
R

r2dy 1 R2d, which
assures the net balance between the two species, we

rss yd ­
l

p 2 qxp2q f2pqy211p2q

1 pds y 2 1d 1 qxp2qds y 2 xdg, sp fi qd

(11)
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from which kjyj2l and hencegsxd are calculated:

gsxd ­
l

2s2 1 p 2 qd

3
ps2 1 p 1 qd 1 qs2 2 p 2 qdx21p2q

p 2 qxp2q .

(12)

For sufficiently smallx, gsxd has the following asymp-
totic forms depending on the parameter range concern

(I) q . p si.e., l , 0d:

gsxd ­
jlj fps2 1 p 1 qdxq2p 1 qs2 2 p 2 qdx2g

2qs2 1 p 2 qd
.

(13)

Thus gsxd , x2 if q . p 1 2, giving a normal correla-
tion profile, whilegsxd , xa if p , q , p 1 2, where
a ­ q 2 p so that0 , a , 2.

(II) p . q si.e., l . 0d:

gsxd ­
ls2 1 p 1 qd sp 1 qxp2qd

2ps2 1 p 2 qd
. (14)

This has the expected formgsxd ­ g0 1 g1xa with
nonvanishingg0 anda ­ p 2 q . 0. Nearp ­ q (or
l ­ 0), we have another asymptotic regime in whichx is
kept small and finite whilep 2 q tends to 0. Specifically,

(III) jsp 2 qd lnxj ø 1:

gsxd ­
1 1 p
4pjlnxj

. (15)

We have thus succeeded in reproducing both the pow
law correlations with parameter-dependenta and the
transition associated with the appearance of a correla
jump.

Fractal amplitude profiles can also be derived. Let
measured length of a segment of an amplitude pro
over the unit interval beSsxd, where x indicates the
minimum scale of measurement. By definition,Ssxd ,
x12Df , while Ssxd . k ylyx if the sum of the amplitude
differencesy dominatesSsxd (which is the case ifSsxd !

` asx ! 0). Df is then estimated for three characteris
regimes as follows:

(I) q . p, q 2 p fi 1 (i.e., a fi 1):

k yl ­ jlj
ps1 1 p 1 qdxq2p 1 qs1 2 p 2 qdx

qs1 1 p 2 qd
.

(16)

Thus we havek yl , x and henceDf ­ 1 if q . p 1 1,
while k yl , xa with a ­ q 2 p and henceDf ­ 2 2

a if p , q , p 1 1 (i.e., 0 , a , 1).
(II) p . q:

k yl ­
ls1 1 p 1 qd

1 1 p 2 q
, (17)

and henceDf ­ 2.
:

r-

n

e

(III0) q 2 p ­ 1 (i.e., a ­ 1):

k yl ­ 22pjljx lnx , (18)

and henceSsxd , jlnxj. The expected relationDf ­
2 2 a has thus been confirmed, and the logarithm
singularity ata ­ 1 has also been explained.

For all its remarkable success, our theory leaves so
problems yet to be resolved. Contrary to the theo
there is no indication from our numerical analysis so
that a vanishes at any value ofK . Furthermore,l
seems to remain negative even after the appearanc
a discontinuity inG. More careful numerical analysi
seems necessary especially near the onset of individ
motions where some interference from the asympto
regime (III) is implied from the theory.

Finally, the present theory suggests that the anoma
behavior of fluctuations discussed so far depends nei
on the spatial dimension of the system nor on the deta
functional form of the coupling. It seems even irreleva
that the origin of the random forcingB be the mutual
coupling of the elements.
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