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Origin of Power-Law Spatial Correlations in Distributed Oscillators and Maps
with Nonlocal Coupling
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It is argued that power-law spatial correlation at short distances is a generic property of spatiotemporal
chaos exhibited by active dynamical elements coupled nonlocally. While this fact was suggested earlier
from some numerical analysis of coupled limit cycles, further evidence is provided here from an analysis
for chaotic Rossler oscillators and logistic maps. A theory is presented to explain why such short-range
nonanalyticity of correlation with parameter-dependent exponent is so universal when the coupling is
nonlocal. [S0031-9007(96)00359-6]

PACS numbers: 05.45.+b, 47.53.+n

Existing theories on extended fields or large assembliesoupling range has been taken to be the length unit. In
of active dynamical elements [1] usually assume locahll systems studied below, periodic boundary conditions
coupling or otherwise global coupling, while the studieswith period L > 1 will be assumed. The other extreme
associated with nonlocal finite-range coupling are relal < 1 gives global coupling. The latter idealization has
tively few. A typical model for the latter class of systems been instrumental in developing some important notions

with a set of field variabled(r, r) has the form such as synchronization transition [5—7], clustering
9A [8—11], and collective chaos [12,13].
i F(A) + B. @ Local-coupling approximation (LCA) of (2) is valid

when W is sufficiently long waved, and this leads to
Here F(A) represents the vector field of a dynamicalthe standard CGL equation. Uniform oscillation =
element (limit cycle, chaotic oscillator, excitable unit, €XP(—ic21), which satisfies (2) and its LCA, becomes un-
etc.) at siter. The elements are now under the controlStable whenl + ¢ ¢, < 0, giving rise to turbulence in

of a self-generated fielB(r,t) = [6(r — r)A(r', t)dr', both cases. Uniqueness of the turbulence in the nonlo-
where ¢ is a nonlocal coupling matrix. Although the cal CGL (2) manifests itself under such strong instabil-
elements are Supposed in (1) to form a quasicontinuougl that short-scale turbulent fluctuations come to invade
distribution, spatial continuity of the field amplitude itself the domain inside the range of coupling. Since no chara-

will no longer be guaranteed once the coupling becomesteristic length exists below the coupling range down to
nonlocal. the “atomic” scale, the turbulence here bears some re-

The term “nonlocal coupling” need not be taken liter- Semblance to the developed fluid turbulence in the iner-
ally, because this form of coupling may result, e.g., fromtial subrange. We now summarize our previous findings
adiabatic elimination of rapidly diffusing components in [2—4] on this type of turbulence. Define spatial correla-
systems of diffusion coupling, i.e., a typical local cou-tion G(x) = (X(0)X(x) + Y(0)Y(x)) and related quantity
pling [2—4]. v(x) = G(0) — G(x), where(---) stands for a long-time

Consider the case that each dynamical element refverage. Our numerical analyses of (2) proved the exis-
resents a small-amplitude oscillator near a supercriticdlence of an open parameter range in whjch) for x < 1
Hopf bifurcation. Then the center-manifold reduction has the nonanalytic form
of (1) leads to a complex Ginzburg-Landau (CGL) type yx) = yo + yix*, (x #0), (3)

equation with nonlocal coupling [4]. It has the canonical . .
where yy, y1, and @ are nonnegative constantsy, is

form 2 X )
nonvanishing only below a certain coupling strength
ww : 2 ; _ K.(c1,c2). Sincey(0) = 0 by definition, nonvanishing
ar W=+ i WEW + K1+ ic) (Z = W), vo implies a discontinuity inG at x = 0. Physically,

(2) this signifies individual motions or disintegration of
the amplitude profile into its microscopic constituents.

where W is a complex field with the real and imaginary Remarkably, the exponent varies withk. Neark,,
parts denoted by andY, respectively, and represents « is definitely less than 1, so that the peak ®fx) is
the internal field. The following discussion will be cusped then. 10 < a < 1 andy, = 0, then we have a
restricted to one-dimensional systems. Assuming expacontinuous but fractal amplitude profile of dimensibp,
nential coupling, which is appropriate for the diffusion- and the relationD, = 2 — « is suggested numerically.
mediated coupling mentioned in the last paragraph [2], wehe caseax = 1 does not still give a simple 1D profile,
have Z(x,t) = %ffx exp—|x — x')\W(x',t)dx'. The but the measured length diverges logarithmically as the
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minimum scale of measurement tends to zero. All these X,+1 = f(X,) + K[h, — f(X,)], (5)
results remain qualitatively the same when the oscillator
type is changed to the Brusselator [3]. wheref (X) = 3.7X(1 — X) andh,(x) = % [exp(—|x —

The main goal of this Letter is to present a theory tox/|)f[X,(x')]dx’. Figure 3 confirms thaty(x) obeys a
explain all these findings. Before doing this, however, wepower law again. The correlation jump.at= 0 appears
show briefly how one may even replace the limit cyclesbelow K = 0.24. Although not shown here with data,
with chaotic oscillators or maps to obtain essentially thefractal amplitude profiles with the dimensi@y = 2 — «

same results. has been confirmed both for Réssler oscillators and logistic
Consider a quasicontinuous array of chaotic Rosslemaps. Aforementioned logarithmic singularity at about
oscillators with exponential coupling a = 1 has also proved to be a common feature.
Although power-law spatial correlations may naturally
dX/dt = =Y + Z + K(¢ — X), be understood as a characteristic of those fluctuations

which occur in a scaleless regime, this fact alone cannot
dY/dt = X + 0.3Y + K(n — 1), lead us to the understanding of the more specific aspects
dZ/dt =02 + XZ —57Z + K({ — Z), (4) of the phenomenon. In presenting our theory below, we
shall use terminology appropriate for differential-equation
whereé(x) = % [exp(—|x — x')X(x")dx'; » and{ are models like (1). Still the underlying physics may apply to
similarly defined in terms of andZ, respectively. With coupled maps as well.
the parameter values assumed, the individual Rossler Equation (1) describes a single forced oscillator (limit
oscillator gives a funnel attractor. Some characteristi€ycle or chaotic) if we regardB(r) as a given time-
profiles of the spatial correlatiof(x) = (X(0)X(x)) are dependent quantity. One may then define space-time local
displayed in Fig. 1. The sharpness of the correlatiorlyapunov exponeni(s) associated with each oscillator.
peak changes with the coupling strendgihand its jump A will fluctuate with B, and may alternate its sign
at x = 0 appears for weaker coupling. These are thdrregularly. Imagine a pair of oscillators with mutual
features already seen for the model (2) [2—4]. Figure Zistancer < 1, and assume that they share commén.
demonstrates the power law of(x) with a changing The latter is true if their amplitude differencg(x) =
with K, where we employed the previous method [2] for A(x) — A(0) remains sufficiently small. Obviously, we
estimatingy, anda. Itis difficult to locatek, accurately, have y(x) = %<|y|2>, where the correlation has been
and our rough estimation givég. = ~0.14-0.15. defined byG(x) = (A(0)A(x)).

We also studied exponentially coupled logistic maps Suppose at first that(r) never becomes positive.
Then the oscillators will synchronize with the motion
of B. The latter should be a smooth function ef
(a) K=0.130 (b) K=0.140 with characteristic length o)(1) because its definition

‘— involves a spatial average over the distance (dfi).
2.0 20 Thus A will also behave smoothly in space, implying
2 2 ly(x)| « x or y(x) = x? yielding a normal correlation.
S ] In a different parameter regima(s) may occasionally
become positive. Suppose that an unstable pheasg
0] has been initiated after a long duration of stable phase
20.0 [A() < 0]. Initially we havel|y| = O(x), but this small
200 0.0 0.5 1.0
X X
1
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FIG. 1. Some correlation profiles obtained numerically fromFIG. 2. y(x) — yo vs x in logarithmic scales for different
an array of 4096 Rdossler oscillators (4) with= 16. The peak coupling strengths. They are obtained numerically from an
position G(0) is indicated by an arrow in (a) and (b). array of 4096 Rdossler oscillators (4) with= 16.
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1603 of y. ConcomitantlyL(r) is replaced withA(r). Assume
. K023, o= nzzggﬂwﬂ“““’ further that the effect ofV is basically to suppress the
024g = ® :unnn;;;-"(ﬁ unstable growth ofy. Similarly, the principal role ofA
. te0a|  0%ac® EDGDM term will be to keepy away from the zero value in the
I o 0260 °  oo® decaying phase. These effects may be incorporated by
£ s _af introducing “hard walls” aty = yo andA = b(r)x. By
te-05 | 0.27° neglecting the dependence adf, the walls may be set at
° y = 1 andx in suitable scales of andx. Our equation
| thus becomes
0.01 0.1 dy B
x — =AMy + e '[-0(y = 1) + 0(x — y)],
FIG. 3. y(x) — y9 vs x in logarithmic scales for different dt € — 0, @8)

coupling strengths. They are obtained numerically from an

array of 4096 logistic maps (5) with = 16. where# denotes the Heaviside step function. Finally, we

simplify the random process af(r) by assuming thai(z)
. . . takes only two valued; and—A; (A;> > 0) and that the
quantity will grow exponentially. Suppose further that Sy ansitions— A, — A; andA; — — A, OCCUT ith nonzero

a resu:;[ of E)hls un:;a?le growth havmlg congnued;or ;[ImfeprobabllltleSp andg, respectively. The average Lyapunov
7, |y| has become) (1), i.e., some value independent o exponent thus becomas= (A1 p — A2q)/(p + q).

x. Then we haver(x) = [Inx|, which is a large number Fortunately, the above model can be solved exactly
for sufficiently smallx. Thus there may be little chance for the stationary distribution,(y) and hence(y2). It

for such an e"eg't to occur. Sill such rare events mayeomg ysefyl here to notice that the statistical ensemble
Contr!bute todlyl )zmore significantly then 'ghe normal of our system is equivalent to an ideal two-component
gontrlbutlotn OfIOt(x tL' Thebfc;Jr_Tertﬁotnmbuélon t.ShOUI? gas, where the particles of one type are accelerated and
€ proport '%Ta r? ebprlo a ”tty a Ife/\ u;a 10N OF 3the other type decelerated exponentially between the two
given unstable phase be longer then). (r) forms a walls, while the particle types themselves will also be

Markoffian random Process in long time seales, Wh'Ch. Wqnterchanged spontaneously; a particle having reached one
assume, this probability will be exponentially small like of the walls will stay there until its type is changed. We
exp(—B7) for larger. Thus will consider only the cas@; = A, = 1 below because
there is nothing qualitatively new about more general
y(x) o P(x) o exp(—Br) < x, (6)  cases. Let the normalized densjty y,7) be expressed

" o as

wherea and 8 are some positive constants. This gives a

rough sketch of how power-law spatial correlations arise. 1) = N+ ‘
The above reasoning, being based on some vaguely Py, 1) = p+(3,0) + p-(y.1)

defined notions, is admittedly too crude, and is also unable + R:(1)d(y — D)+ R-(1)d(y — x), (9)

to explain the origin of the correlation jump. What is

intended here, however, is only to suggest that the powé'l"herepi are the_ densities between the W‘?‘!IS’ the suffixes
law may result from a miraculous combination of two +~ @nd — Specifying components with positive and nega-

exponential functions of different physical origins, onelive A, respectively, and singular contributions from the
associated with a Markoffian random process and th alls have been separated out as the last two terms. Then
other with the dynamics of unstable growth [14]. the respective parts of the distribution are governed by

To make the argument more quantitative, we now try to

derive an approximate equation ferto calculate(| y|?). dp+/ot = =0(yp+)/dy = qp+ + pp-.

The equation foty obtained from (1) generally takes the dp—/dt = d(yp-)/dy + qp+ — pp—,
form dR./dt = p+(1) — qR.
‘;—f — i)y + N(y) + Ax.1). 7 dR_/dt = xp_(x) — pR._ . (10)
Demandingg([ p+dy + R+)= p(f p—dy + R-), which

where L()y is the linearization of F(A) about A = .
. . assures the net balance between the two species, we find
A(0,1); N(y) represents nonlinear terms, aAdyives the — P

difference in the internal field between the two oscillators; p.(y) = A [2pqy ' +P=a

i.e., A(x,1) = B(x,1) — B(0,7) = b(r)x with randomly : p — qxP~d

fluctuatingb(¢). Some drastic approximations on (7) are . p—q .

now made. First, we replagewith a scalary, by which T poly = Dt agx" 180y = 0] (p #q)
we are keeping track only of the most unstable component (12)

4354



VOLUME 76, NUMBER 23 PHYSICAL REVIEW LETTERS 3 UNE 1996
from which(|y|?) and hencey(x) are calculated: 11y g — p = 1 (i.e.,a = 1):
(x) A 2
)= — > - _
T Sr— (y) = =2plAlxiny, (18)
 PC AP+ g +q2—p = gre

p — gqxP1
(12)

For sufficiently smallx, v(x) has the following asymp-

and henceS(x) ~ [Inx|. The expected relatioD; =
2 — a has thus been confirmed, and the logarithmic
singularity ate = 1 has also been explained.

For all its remarkable success, our theory leaves some

totic forms depending on the parameter range concerned@roblems yet to be resolved. Contrary to the theory,

() ¢g>p(i.e,X<0):

_MIp@ +p + @xT" + g2 = p = g)x°]
292+ p —q) '

y(x)
(13)

Thus y(x) ~ x% if ¢ > p + 2, giving a normal correla-

tion profile, whiley(x) ~ x* if p < ¢ < p + 2, where

a =g — psothat0 < a < 2.

(n p > g (i.e., A > 0):

A2+ p +q)(p + gxP79)
2p2+p —q) '

This has the expected formy(x) = yo + y1x* with

nonvanishingy, andae = p — ¢ > 0. Nearp = ¢ (or

A = 0), we have another asymptotic regime in whicks
kept small and finite whilep — ¢ tends to 0. Specifically,

am 1(p — gq) Inx| < 1:

y(x)

y(x) = (14)

_1+p
4plinx|

(15)

there is no indication from our numerical analysis so far
that « vanishes at any value ok. Furthermore,A
seems to remain negative even after the appearance of
a discontinuity inG. More careful numerical analysis
seems necessary especially near the onset of individual
motions where some interference from the asymptotic
regime (ll) is implied from the theory.

Finally, the present theory suggests that the anomalous
behavior of fluctuations discussed so far depends neither
on the spatial dimension of the system nor on the detailed
functional form of the coupling. It seems even irrelevant
that the origin of the random forcin@ be the mutual
coupling of the elements.
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