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The phase reduction method for limit cycle oscillators subjected to weak perturbations has significantly

contributed to theoretical investigations of rhythmic phenomena. We here propose a generalized phase

reduction method that is also applicable to strongly perturbed limit cycle oscillators. The fundamental

assumption of our method is that the perturbations can be decomposed into a slowly varying component as

compared to the amplitude relaxation time and remaining weak fluctuations. Under this assumption, we

introduce a generalized phase parameterized by the slowly varying component and derive a closed

equation for the generalized phase describing the oscillator dynamics. The proposed method enables us to

explore a broader class of rhythmic phenomena, in which the shape and frequency of the oscillation may

vary largely because of the perturbations. We illustrate our method by analyzing the synchronization

dynamics of limit cycle oscillators driven by strong periodic signals. It is shown that the proposed

method accurately predicts the synchronization properties of the oscillators, while the conventional

method does not.
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Rhythmic phenomena are ubiquitous in nature and of
great interest in many fields of science and technology,
including chemical reactions, neural networks, genetic
circuits, lasers, and structural vibrations [1–8]. These
rhythmic phenomena often result from complex interac-
tions among individual rhythmic elements, typically mod-
eled as limit cycle oscillators. In analyzing such systems,
the phase reduction method [1–6] has been widely used
and considered an essential tool. It systematically approx-
imates the high-dimensional dynamical equation of a per-
turbed limit cycle oscillator by a one-dimensional reduced
phase equation, with just a single phase variable ! repre-
senting the oscillator state.

A fundamental assumption of the conventional phase
reduction method is that the applied perturbation is suffi-
ciently weak; hence, the shape and frequency of the limit
cycle orbit remain almost unchanged. However, this as-
sumption hinders the applications of the method to
strongly perturbed oscillators, because the shapes and fre-
quencies of their orbits can significantly differ from those
in the unperturbed cases. Indeed, strong coupling can
destabilize synchronized states of oscillators that are stable
in the weak coupling limit [9]. The effect of strong cou-
pling can further lead to nontrivial collective dynamics
such as quorum-sensing transition [8], amplitude death
and bistability [9], and collective chaos [10]. The assump-
tion of weak perturbations can also be an obstacle to
modeling real-world systems, which are often subjected
to strong perturbations.

Although the phase reduction method has recently been
extended to stochastic [11], delay-induced [12], and col-
lective oscillations [13], these extensions are still limited to
the weakly perturbed regime. To analyze a broader class of

synchronization phenomena exhibited by strongly driven
or interacting oscillators, the conventional theory should be
extended. This Letter proposes an extension of the phase
reduction method to strongly perturbed limit cycle oscil-
lators, which enables us to derive a simple generalized
phase equation that quantitatively describes their dynam-
ics. Although not all of the above collective phenomena
[8–10] are the subject of discussion in this study, our
formulation will give an insight into a certain class of
them, e.g., bistability between phase-locked and drifting
states [9]. We use our method to analyze the synchroniza-
tion dynamics of limit cycle oscillators subjected to strong
periodic forcing, which cannot be treated appropriately by
the conventional method.
We consider a limit cycle oscillator whose dynamics

depends on a time-varying parameter IðtÞ ¼
½I1ðtÞ; . . . ; ImðtÞ&> 2 Rm representing general perturba-
tions, described by

_XðtÞ ¼ FðXðtÞ; IðtÞÞ; (1)

where XðtÞ ¼ ½X1ðtÞ; . . . ; XnðtÞ&> 2 Rn is the oscillator
state and FðX; IÞ ¼ ½F1ðX; IÞ; . . . ; FnðX; IÞ&> 2 Rn is an
I-dependent vector field representing the oscillator dynam-
ics. For example, X and I can represent the state of a
periodically firing neuron and the injected current, respec-
tively [4,6]. In this Letter, we introduce a generalized phase
!, which depends on the parameter IðtÞ, of the oscillator. In
defining the phase !, we require that the oscillator state
XðtÞ can be accurately approximated by using !ðtÞ with a
sufficiently small error and that !ðtÞ increases at a constant
frequency when the parameter IðtÞ remains constant.
The former requirement is a necessary condition for the
phase reduction, i.e., for deriving a closed equation for the
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generalized phase, and the latter enables us to derive an
analytically tractable phase equation.

To define such !, we suppose that I is constant until
further notice. We assume that Eq. (1) possesses a family of
stable limit cycle solutions with period TðIÞ and frequency
!ðIÞ :¼ 2"=TðIÞ for I 2 A, where A is an open subset of
Rm (e.g., an interval between two bifurcation points). An
oscillator state on the limit cycle with parameter I can be
parameterized by a phase ! 2 ½0; 2"Þ as X0ð!; IÞ ¼
½X0;1ð!; IÞ; . . . ; X0;nð!; IÞ&>. Generalizing the conventional
phase reduction method [1–5], we define the phase ! such
that, as the oscillator stateXðtÞ ¼ X0ð!ðtÞ; IÞ evolves along
the limit cycle, the corresponding phase !ðtÞ increases at a
constant frequency !ðIÞ as _!ðtÞ ¼ !ðIÞ for each I 2 A.
We assume thatX0ð!; IÞ is continuously differentiable with
respect to ! 2 ½0; 2"Þ and I 2 A.

We consider an extended phase spaceRn ' A, as depicted
schematically in Fig. 1(a). We define C(Rn'A as a
cylinder formed by the family of limit cycles [X0ð!; IÞ, I]
for ! 2 ½0; 2"Þ and I 2 A and define U ( Rn ' A as a
neighborhood of C. For each I, we assume that any orbit
starting from an arbitrary point ðX; IÞ in U asymptotically
converges to the limit cycle X0ð!; IÞ on C. We can then
extend the definition of the phase into U, as in the conven-
tional method [1–5], by introducing the asymptotic phase
and isochrons around the limit cycle for each I. Namely, we
can define a generalized phase function !ðX; IÞ 2 ½0; 2"Þ
of ðX; IÞ 2 U such that !ðX; IÞ is continuously differen-
tiable with respect to X and I, and ð@!ðX; IÞ=@XÞ )
FðX; IÞ ¼ !ðIÞ holds everywhere inU, where ð@!=@XÞ ¼
½ð@!=@X1Þ; . . . ; ð@!=@XnÞ&> 2 Rn is the gradient of

!ðX; IÞ with respect to X and the dot ð)Þ denotes an inner
product. This !ðX; IÞ is a straightforward generalization
of the conventional asymptotic phase [1–5] and guarantees
that the phase of any orbit XðtÞ in U always increases

with a constant frequency as _!ðXðtÞ; IÞ ¼ !ðIÞ at each I.
For any oscillator state on C, !ðX0ð!; IÞ; IÞ ¼ ! holds. In
general, the origin of the phase can be arbitrarily defined for
each I as long as it is continuously differentiable with
respect to I. The assumptions that X0ð!; IÞ and !ðX; IÞ
are continuously differentiable can be further relaxed for a
certain class of oscillators, such as those considered in
Ref. [14].
Now suppose that the parameter IðtÞ varies with time. To

define ! that approximates the oscillator state with a suffi-
ciently small error, we assume that IðtÞ can be decomposed
into a slowly varying component qð#tÞ 2 A and remaining
weak fluctuations $pðtÞ 2 Rm as IðtÞ ¼ qð#tÞ þ $pðtÞ.
Here, the parameters # and$ are assumed to be sufficiently
small so that qð#tÞ varies slowly as compared to the re-
laxation time of a perturbed orbit to the cylinder C of the
limit cycles, which we assume to be Oð1Þ without loss
of generality, and the oscillator state XðtÞ always remains
in a close neighborhood of X0ð!; qð#tÞÞ on C, i.e.,
XðtÞ ¼ X0ð!ðtÞ; qð#tÞÞþOð#;$Þ holds (see Supplemental
Material [15]). We also assume that qð#tÞ is continuously
differentiable with respect to t 2 R. Note that the slow
component qð#tÞ itself does not need to be small.
Using the phase function!ðX; IÞ, we introduce a gener-

alized phase !ðtÞ of the limit cycle oscillator (1) as
!ðtÞ ¼ !ðXðtÞ; qð#tÞÞ. This definition guarantees that !ðtÞ
increases at a constant frequency when IðtÞ remains

FIG. 1 (color online). Phase dynamics of a modified Stuart-Landau oscillator. (a) A schematic diagram of the extended phase space
Rn ' A with n ¼ 2 and m ¼ 1. (b) Frequency !ðIÞ. (c) I-dependent stable limit cycle solutions X0ð!; IÞ. (d),(e) Sensitivity functions
%ð!; IÞ and &ð!; IÞ. (f),(g) Time series of the phase !ðtÞ of the oscillator driven by (f) a periodically varying parameter Ið1ÞðtÞ or (g) a
chaotically varying parameter Ið2ÞðtÞ. For each of these cases, results of the conventional (top panel) and proposed (middle panel)
methods are shown. Evolution of the conventional phase ~!ðtÞ ¼ !ðXðtÞ; qcÞ and the generalized phase !ðtÞ ¼ !ðXðtÞ; qð#tÞÞ measured
from the original system (lines) is compared with that of the conventional and generalized phase equations (circles). Time series of the
state variable xðtÞ (red solid line) and time-varying parameter IðtÞ (blue dashed line) are also depicted (bottom panel). The periodically
varying parameter is given by Ið1ÞðtÞ ¼ qð1Þð#tÞ þ $pð1ÞðtÞ with qð1Þð#tÞ ¼ 0:05 sinð0:5tÞ þ 0:02 sinðtÞ and $pð1ÞðtÞ ¼ 0:02 sinð3tÞ, and
the chaotically varying parameter is given by Ið2ÞðtÞ ¼ qð2Þð#tÞ þ $pð2ÞðtÞ with qð2Þð#tÞ ¼ 0:007L1ð0:3tÞ and $pð2ÞðtÞ ¼ 0:001L2ðtÞ,
where L1ðtÞ and L2ðtÞ are independently generated time series of the variable x of the chaotic Lorenz equation [3], _x ¼ 10ðy! xÞ,
_y ¼ xð28! zÞ ! y, and _z ¼ xy! 8z=3.
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constant and leads to a closed equation for !ðtÞ. Expanding
Eq. (1) in $ as _XðtÞ ¼ FðX; qð#tÞÞþ $GðX; qð#tÞÞpðtÞ þ
Oð$2Þ and using the chain rule, we can derive _!ðtÞ¼
!ðqð#tÞÞ þ $ð@!ðX;IÞ=@XÞjðXðtÞ;qð#tÞÞ ) GðX;qð#tÞÞpðtÞþ
#ð@!ðX;IÞ=@IÞjðXðtÞ;qð#tÞÞ ) _qð#tÞþOð$2Þ, whereGðX; IÞ 2
Rn'm is a matrix whose ði; jÞth element is given
by @FiðX; IÞ=@Ij, @!=@I ¼ ½ð@!=@I1Þ; . . . ; ð@!=@ImÞ&>
2 Rm is the gradient of !ðX; IÞ with respect to I, and
_qð#tÞ denotes dqð#tÞ=dð#tÞ.
To obtain a closed equation for !, we use the lowest-order

approximation in $ and #, i.e., XðtÞ ¼ X0ð!ðtÞ; qð#tÞÞþ
Oð#;$Þ. Then, by defining a phase sensitivity function
Zð!; IÞ ¼ ð@!ðX; IÞ=@XÞjðX0ð!;IÞ;IÞ 2 Rn and two other
sensitivity functions ! ð!; IÞ ¼ G>ðX0ð!; IÞ; IÞZð!; IÞ 2
Rm and "ð!; IÞ ¼ ð@!ðX; IÞ=@IÞjðX0ð!;IÞ;IÞ 2 Rm, we can
obtain a closed equation for the oscillator phase !ðtÞ as

_!ðtÞ ¼ !ðqð#tÞÞ þ $! ð!; qð#tÞÞ ) pðtÞ
þ #"ð!; qð#tÞÞ ) _qð#tÞ þOð$2; #2;$#Þ; (2)

which is a generalized phase equation that we propose in
this study. The first three terms in the right-hand side of
Eq. (2) represent the instantaneous frequency of the oscil-
lator, the phase response to theweak fluctuations$pðtÞ, and
the phase response to deformation of the limit cycle orbit
caused by the slow variation in qð#tÞ, respectively, all of
which depend on the slowly varying component qð#tÞ.

To address the validity of Eq. (2) more precisely, let 'ðIÞ
(> 0) denote the absolute value of the second largest
Floquet exponent of the oscillator for a fixed I, which
characterizes the amplitude relaxation time scale of
the oscillator ( + 1='ðIÞ). As argued in Supplemental
Material [15], we can show that the error terms in Eq. (2)
remain sufficiently small when $='ðqð#tÞÞ , 1 and
#='ðqð#tÞÞ2 , 1, namely, when the orbit of the oscillator
relaxes to the cylinder C sufficiently faster than the varia-
tions in qð#tÞ.

Note that if we define the phase variable as ~!ðtÞ ¼
!ðXðtÞ; qcÞ with some constant qc instead of !ðtÞ ¼
!ðXðtÞ; qð#tÞÞ, ~!ðtÞ gives the conventional phase. Then,

we obtain the conventional phase equation _~!ðtÞ ¼ !c þ
$!cð~!Þ ) pðtÞ þOð$2Þ with qð#tÞ ¼ qc and $pðtÞ ¼
IðtÞ ! qc. Here, !c :¼ !ðqcÞ is a natural frequency,
! cð~!Þ ¼ ! ð~!;qcÞ ¼GðX0ð~!;qcÞ;qcÞ>Zð~!;qcÞ, and Zð~!; qcÞ
is the conventional phase sensitivity function at I ¼ qc [2].
This equation is valid only when $='ðqcÞ , 1 [i.e.,
kIðtÞ ! qck='ðqcÞ , 1]. By using the near-identity trans-
formation [16], we can show that the conventional equation
is actually a low-order approximation of the generalized
equation (2) (see Sec. III of Supplemental Material [15]).

In practice, we need to calculate ! ð!; IÞ and "ð!; IÞ
numerically from mathematical models or estimate them
through experiments. We can show that the following
relations hold (see Supplemental Material [15] for the
derivation):

" ð!; IÞ ¼ !@X0ð!; IÞ>
@I

Zð!; IÞ; (3)

" ð!; IÞ ¼ "ð!0; IÞ !
1

!ðIÞ
Z !

!0

½! ð!0; IÞ ! "! ðIÞ&d!0; (4)

"! ðIÞ :¼ 1

2"

Z 2"

0
! ð!; IÞd! ¼ d!ðIÞ

dI
; (5)

where ð@X0ð!; IÞ=@IÞ 2 Rn'm is a matrix whose ði; jÞth
element is given by ð@X0;ið!; IÞ=@IjÞ, !0 2 ½0; 2"Þ is a
constant, and "! ðIÞ is the average of "ð!; IÞ with respect
to ! over one period of oscillation. From mathematical
models of limit cycle oscillators, Zð!; IÞ can be obtained
numerically by the adjoint method for each I [5,6],
and then ! ð!; IÞ and "ð!; IÞ can be computed from
! ð!; IÞ ¼ G>ðX0ð!; IÞ; IÞZð!; IÞ and Eqs. (3) and (4).
Experimentally, Zð!; IÞ and ! ð!; IÞ can be measured by
applying small impulsive perturbations to I, while "ð!; IÞ
can be obtained by applying small stepwise perturbations
to I.
To test the validity of the generalized phase equation (2),

we introduce an analytically tractable model, a modified
Stuart-Landau (MSL) oscillator (see Ref. [17] and Fig. 1
for the definition and details). We numerically predict the
phase !ðtÞ of a strongly perturbed MSL oscillator by both
conventional and generalized phase equations and compare
them with direct numerical simulations of the original
system. In applying the conventional phase reduction,
we set qc ¼ hIðtÞit, where h)it denotes the time average.
In Fig. 1, we can confirm that the generalized phase
equation (2) accurately predicts the generalized phase
!ðXðtÞ; qð#tÞÞ of the original system, while the conven-
tional phase equation does not well predict the conven-
tional phase!ðXðtÞ; qcÞ because of large variations in IðtÞ.
As an application of the generalized phase equation (2),

we analyze k:l phase locking [18] of the system (1) to a
periodically varying parameter IðtÞ with period TI and
frequency !I, in which the frequency tuning (lh _!it ¼
k!I) occurs. Although the averaging approximation [19]
for the phase difference ~c ðtÞ ¼ l!ðtÞ ! k!I is generally
used to analyze the phase locking [2,18], we cannot
directly apply it in the present case because the frequency
!ðqð#tÞÞ can vary largely with time. Thus, generalizing the
conventional definition, we introduce the phase difference
as c ðtÞ ¼ l!ðtÞ ! k!It! lhðtÞ with an additional term
!lhðtÞ to remove the large periodic variations in c ðtÞ
due to !ðqð#tÞÞ, where hðtÞ is a TI-periodic function
defined as hðtÞ ¼ R

t
0½!ðqð#t0ÞÞ! T!1

I

RTI
0 !ðqð#tÞÞdt&dt0.

By virtue of this term, temporal variations in _c remain
of the order Oð#;$Þ, i.e., j _c j , 1, which enables us to
apply the averaging approximation to c .
Introducing a small parameter( representing themagnitude

of variations in c , one can derive a dynamical equation for c
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as _c ðtÞ ¼ (fðc ; tÞ, where (fðc ; tÞ ¼ lgðc =lþ k!It=lþ
hðtÞ; tÞ ! k!I ! l _hðtÞ and gð!; tÞ denotes the right-hand side
of Eq. (2). Using first- and second-order averaging [19], we
can introduce slightly deformed phase differences c 1;2 sat-
isfying c 1;2ðtÞ ¼ c ðtÞ þOð(Þ and obtain the first- and
second-order averaged equations _c 1ðtÞ ¼ ( "f1ðc 1Þ þ
Oð(2Þ and _c 2ðtÞ ¼ ( "f1ðc 2Þ þ (2 "f2ðc 2Þ þOð(3Þ, where
"f1ðc Þ and "f2ðc Þ are given by "f1ðc Þ ¼ ðlTIÞ!1 'RlTI
0 fðc ; tÞdt and "f2ðc Þ ¼ ðlTIÞ!1

RlTI
0 ½uðc ; tÞ'

ð@fðc ; tÞ=@c Þ ! "f1ðc Þð@uðc ; tÞ=@c Þ&dt, respectively,
and uðc ; tÞ ¼ R

t
0½fðc ; t0Þ ! "f1ðc Þ&dt0. These averaged

equations can be considered autonomous by neglecting the
Oð(2Þ andOð(3Þ terms, respectively. Averaged equations for
the conventional phase equation can be derived similarly.
Thus, if the averaged equation has a stable fixed point, k:l
phase locking is expected tooccur.Asdemonstratedbelow, the
first-order averaging of the generalized phase equation already
predicts qualitative features of the phase-locking dynamics,
while the second-order averaging gives more precise results
when the parameter IðtÞ varies significantly.

As an example, we use the MSL oscillator and inves-
tigate their phase locking to periodic forcing (See
Supplemental Material [15] for other examples). Figure 2
shows the results of the numerical simulations. We apply

four types of periodically varying parameters and predict if
the oscillator exhibits either 1:1 or 1:2 phase locking to the
periodically varying parameter qð#tÞ [a small fluctuation
$pðtÞ is also added for completeness]. We derive averaged
equations for the phase differences c 1;2 by using the pro-
posed and conventional methods and compare the results
with direct numerical simulations of theMSL oscillator. We
find that our new method correctly predicts the stable
phase-locking point already at first-order averaging, while
the conventional method does not. In particular, the con-
ventional method can fail to predict whether phase locking
takes place or not, as shown in Figs. 2(g) and 2(h), even
after the second-order averaging. In this case, the exponen-
tial dependence of the frequency !ðIÞ on the parameter I is
the main cause of the breakdown of the conventional
method (see Sec. III of Supplemental Material [15] for a
discussion). Typical trajectories of ½xðtÞ; yðtÞ; qð#tÞ&> are
plotted on the cylinder C of limit cycles in the extended
phase space ½x; y; I&>, which shows that the oscillator state
migrates over C synchronously with the periodic forcing.
The trajectories are closed when phase locking occurs.
In summary, we proposed a generalized phase reduction

method that enables us to theoretically explore a broader
class of strongly perturbed limit cycle oscillators. Although
still limited to slowly varying perturbations with weak

FIG. 2 (color online). Phase locking of the modified Stuart-Landau oscillator. Four types of periodically varying parameters IðjÞ

(j ¼ 3, 4, 5, 6) are applied, which lead to 1:1 phase locking to Ið3ÞðtÞ [(a), (e), and (i)], 1:1 phase locking to Ið4ÞðtÞ [(b), (f), and (j)], 1:2
phase locking to Ið5ÞðtÞ [(c), (g), and (k)], and failure of phase locking to Ið6ÞðtÞ [(d), (h), and (l)]. (a)–(d) Time series of the state
variable xðtÞ of a periodically driven oscillator (red solid line) and periodic external forcing (blue dashed line). (e)–(h) Dynamics of the
phase difference c 1;2 with an arrow representing a stable fixed point (top panel) and time series of c 1;2 with 20 different initial states
(bottom panel). (i)–(l) Orbits of a periodically driven oscillator (blue line) on the cylinder of the limit cycles (light blue line) plotted in

the extended phase space. The parameter IðjÞðtÞ is given by IðjÞðtÞ ¼ qðjÞð#tÞ þ $pðjÞðtÞ, qðjÞð#tÞ ¼ )ðjÞ sinð!ðjÞ
I tÞ, and $pðjÞðtÞ ¼

0:02 sinð5!ðjÞ
I tÞ with )ð3;4;5;6Þ ¼ 0:1, 0.3, 0.4, 0.4 and !ð3;4;5;6Þ

I ¼ 1:05, 1.10, 0.57, 0.51.

PRL 111, 214101 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

22 NOVEMBER 2013

214101-4



fluctuations, our method avoids the assumption of weak
perturbations, which has been a major obstacle in applying
the conventional phase reduction method to real-world
phenomena. It will therefore facilitate further theoretical
investigations of nontrivial synchronization phenomena of
strongly perturbed limit cycle oscillators [9,10]. As a final
remark, we point out that a phase equation similar to
Eq. (2) has been postulated in a completely different con-
text, to analyze the geometric phase in dissipative dynami-
cal systems [20]. This formal similarity may provide an
interesting possibility of understanding synchronization
dynamics of strongly perturbed oscillators from a geomet-
rical viewpoint.
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