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Limit-cycle oscillations induced by time delay are widely observed in various systems, but a systematic

phase-reduction theory for them has yet to be developed. Here we present a practical theoretical

framework to calculate the phase response function Zð�Þ, a fundamental quantity for the theory, of

delay-induced limit cycles with infinite-dimensional phase space. We show that Zð�Þ can be obtained as a

zero eigenfunction of the adjoint equation associated with an appropriate bilinear form for the delay

differential equations. We confirm the validity of the proposed framework for two biological oscillators

and demonstrate that the derived phase equation predicts intriguing multimodal locking behavior.
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Delay differential equations (DDEs) are an increasingly
important tool in various areas of science and engineering
including nonlinear optics, traffic flow, climate systems,
and biological regulations [1–6]. For example, cortical
neurons have delays in transmission of electrical spikes
[7,8] and gene-protein interactions have several sources of
delay such as the transcription of proteins from mRNA
[9–15], both of which lead to rhythmic activities. Often
single biological oscillators are coupled together through
mutual interaction to generate synchronous rhythms, which
plays important functional roles, e.g., neural information
processing and somite segmentation [12,16]. Various DDEs
[5,7–15] have been proposed as models of such biological
rhythms, which typically exhibit limit-cycle oscillations.

For limit-cycle oscillators described by ordinary differ-
ential equations, a standard mathematical method to ad-
dress the issue of synchrony is to reduce the oscillators
perturbed by mutual interaction to simple phase models.
Each oscillator is described by a scalar equation

d

dt
�ðtÞ ¼ !þ Zð�ÞpðtÞ; (1)

where � is the phase of the oscillator, ! is the natural
frequency, and pðtÞ represents perturbations. The function
Zð�Þ, which is the focus of this study, quantifies the linear
response of the oscillator’s phase to the applied perturba-
tions, which we call the phase response function (also
called the phase sensitivity function [17] or the infinitesi-
mal phase resetting curve [18]). It quantitatively captures
essential dynamics of the oscillator and is a fundamental
quantity for the phase-reduction theory. Based on the fact
that Zð�Þ is actually an eigenfunction of an adjoint linear
operator derived from the full system of equations, a
convenient semianalytical method, called the adjoint

method, that provides numerically accurate Zð�Þ has
been widely used [18,19].
The reduction to the phase model is valid as long as the

mutual interaction between the oscillators is sufficiently
weak. By plugging the mutual interaction term into pðtÞ
and averaging Eq. (1), we can obtain a simple phase model
in the general form [18,20,21],

d

dt
�j ¼ !j þ

X
k

�jkð�k � �jÞ; ðj ¼ 1; 2; . . .Þ; (2)

where �j is the phase of the jth oscillator, !j denotes its

natural frequency, and �jk is the phase coupling function

representing the effective interaction between oscillators j
and k. �jk is a periodic function calculated by convolving

the mutual interaction term pðtÞ with ZðtÞ.
The above phase-reduction theory has been widely used

to study synchronization properties of various types of
coupled oscillators [18,20,21]. However, somewhat sur-
prisingly, the phase-reduction theory for delay-induced
oscillations has not been formally developed. In particular,
a practical theoretical framework to calculate Zð�Þ has
been missing for delay-induced limit cycles. Thus, direct
numerical simulations have been mainly used to investi-
gate the synchronization of DDEs [12–14]. One possible
reason for this would be the infinite-dimensional nature of
DDEs. Limit cycles of DDEs reside in infinite-dimensional
phase space and the standard adjoint method for ordinary
low-dimensional limit cycles [18] cannot be applied di-
rectly. Note that delays in the oscillator’s intrinsic dynam-
ics are essentially different from delays in the coupling
between oscillators; the latter can be investigated by a
simple extension of the conventional phase-reduction
theory [1,22,23].
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In this study, we develop an adjoint method to compute
Zð�Þ for limit cycles exhibited by DDEs. A key factor is the
introduction of a mathematically appropriate dual product
(bilinear form) for DDEs [24–26], which enables us to
properly define the phase � and calculate Zð�Þ for limit
cycles in infinite-dimensional phase space. As examples,
we consider biological oscillations in cortico-thalamic and
gene-regulatory models, and demonstrate that the method
nicely works through comparisons to direct perturbation
methods, analytical computations near the bifurcation
point, and numerical computations of weakly coupled
systems. Moreover, based on the obtained Zð�Þ, we reveal
that the coupled system can exhibit intriguing multimodal
phase-locking behavior, in which the number of stable
phase differences increases with the time delay.

Our aim is to derive a phase equation (1) from a DDE of
the form

d

dt
XðtÞ ¼ FðXðtÞ; Xðt� �ÞÞ (3)

by properly calculating Zð�Þ, where XðtÞ 2 RN is a column
vector of N real components and � is a nonnegative con-
stant delay. We assume that this DDE has a linearly stable
limit cycle whose period is T. As formulated by Hale [25]
and Campbell [27], a DDE is considered a functional
differential equation by introducing a function-space rep-

resentation of XðtÞ, XðtÞð�Þ � Xðtþ �Þð�� � � � 0Þ,
where XðtÞ 2 C0 and C0 ¼ Cð½��; 0� ! RNÞ is a space
of continuous functions that map the interval [� �, 0]
into RN . Namely, the DDE is considered an infinite-
dimensional dynamical system whose phase space is the

function space C0. From Eq. (3), the dynamics of XðtÞð�Þ
can be described as

d

dt
XðtÞð�Þ ¼ d

d�
XðtÞð�Þ ð�� � �< 0Þ;

d

dt
XðtÞð�Þ ¼ FðXðtÞð0Þ; XðtÞð��ÞÞ ð� ¼ 0Þ: (4)

We denote the limit-cycle orbit as X0ðtÞ and a small devia-
tion from it as YðtÞ, i.e., XðtÞ ¼ X0ðtÞ þ YðtÞ. The linear-
ized equation for YðtÞ can then be written as

� d

dt
YðtÞ þ F1ðtÞYðtÞ þ F2ðtÞYðt� �Þ ¼ 0; (5)

where FjðtÞ ¼ @xjFðx1; x2Þ (j ¼ 1, 2) is evaluated at

ðx1; x2Þ ¼ ðX0ðtÞ; X0ðt� �ÞÞ. Although the coefficients
F1ðtÞ and F2ðtÞ of YðtÞ are time-dependent periodic func-
tions, this linearized equation is still a DDE. We denote a

linear operator L̂ as

ðL̂YðtÞÞð�Þ ¼ � d

dt
YðtÞð�Þ þ d

d�
YðtÞð�Þ ð�� � �< 0Þ;

ðL̂YðtÞÞð�Þ ¼ � d

dt
YðtÞð�Þ þ F1ðtÞYðtÞð0Þ

þ F2ðtÞYðtÞð��Þ ð� ¼ 0Þ; (6)

by introducing a function YðtÞ 2 C0 as YðtÞð�Þ ¼
Yðtþ �Þð�� � � � 0Þ.
Following Halanay [24], Hale [25], and Simmendinger

[26], an adjoint equation to Eq. (5) can be introduced as

d

dt
Y�ðtÞ þ Y�ðtÞF1ðtÞ þ Y�ðtþ �ÞF2ðtþ �Þ ¼ 0; (7)

where Y�ðtÞ 2 RN� is a row vector of N real components.

Introducing again a functional representation YðtÞ�ðsÞ �
Y�ðtþ sÞð0 � s � �Þ, where YðtÞ� 2 C�

0 and C�
0 ¼

Cð½0; �� ! RN�Þ is now a space dual to C0 consisting of
functions that map the interval [0, �] into RN�. Then, an
adjoint operator L̂� of L̂ is derived as

ðL̂�YðtÞ�ÞðsÞ ¼ d

dt
YðtÞ�ðsÞ � d

ds
YðtÞ�ðsÞ ð0< s � �Þ;

ðL̂�YðtÞ�ÞðsÞ ¼ d

dt
YðtÞ�ðsÞ þ YðtÞ�ð0ÞF1ðtÞ

þ YðtÞ�ð�ÞF2ðtþ �Þ ðs ¼ 0Þ: (8)

The above adjoint equation and the adjoint linear operator
are associated with a bilinear form that is appropriately
defined for DDEs [26],

hc ;�;ti� c ð0Þ�ð0Þþ
Z 0

��
c ð�þ�ÞF2ðtþ�þ�Þ�ð�Þd�;

(9)

where� 2 C0 and c 2 C�
0. It is easy to show that dXðtÞ

0 =dt

is a zero eigenfunction of the linear operator L̂ by differ-

entiating Eq. (6) with respect to t. Now, let yðtÞ�0 denote the

zero eigenfunction of the adjoint operator L̂� and pðtÞð�Þ ¼
pUð�Þ�ðt� taÞ an infinitesimal perturbation applied to the
oscillator at time t ¼ ta, where p is a tiny constant, U is a
unit step (Heaviside) function, and � is a Dirac delta

function. The function U indicates that only the XðtaÞ
0 ð0Þ

component of the whole oscillator state XðtaÞ
0 2 C0 is per-

turbed. Namely, only the present component of the oscil-
lator state can be modified and its past components cannot
be changed. Then, similar to the case of ordinary differen-
tial equations [18,20], projection of the perturbation
onto the phase component can be represented using the

bilinear product as hyðtÞ�0 ; pðtÞ; ti. This quantity is equal to

yðtaÞ�0 ð0ÞpðtaÞð0Þ, because pðtÞð�Þ ¼ 0 when �� � �< 0.

Therefore, yðtaÞ�0 ð0Þ ¼ y�0ðtaÞ should be identical to

Zð� ¼ !taÞ after appropriate normalization.
In actual calculations, the limit-cycle solution X0ðtÞ is

obtained numerically. Using the numerical solution X0ðtÞ,
we can integrate Eq. (7) backwards in time from arbitrary
initial conditions to obtain y�0ðtÞ, because functional compo-

nents other than y�0ðtÞ have positive eigenvalues and therefore
eventually vanish (in reverse time) due to the linear stability
of X0ðtÞ (by virtue of the Floquet theorem [26]). We further

normalize the amplitude of y�0ðtÞ ¼ yðtÞ�0 ð0Þ as�
yðtÞ�0 ;

d

dt
XðtÞ
0 ; t

�
¼ ! ¼ 2�

T
: (10)
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The phase response function is then given by Zð�Þ ¼
y�0ðt ¼ �=!Þ ¼ yðt¼�=!Þ�

0 ð0Þ. This proceduregives an adjoint
method for delay-induced limit cycles described by DDEs
and is the main result of this study. If we take the limit of
F2 ! 0 or � ! 0, the proposed adjoint method for DDEs
becomes identical to the conventional adjoint method for
ordinary differential equations. Therefore, the above method
is actually a natural extension of the adjoint method to delay-
induced oscillations.

We now evaluate Z of several types of DDEs by the
adjoint method proposed above and demonstrate that the
results agree well with those obtained by a direct pertur-
bation method or by analytical calculations near the bifur-
cation point. To check the validity of the adjoint method,
we calculate Zð�Þ by directly applying weak impulsive
perturbations to the DDE exhibiting limit-cycle oscilla-
tions. Namely, we kick the orbit XðtÞ out of the limit cycle,
wait for the orbit to come back to the limit cycle, and
measure the asymptotic phase difference caused by the
kick. It is notable that the actual time course of the orbit
XðtÞ typically exhibits several ‘‘kickbacks’’ of period �
before finally coming back to the limit cycle due to the
delay. We thus need to run the numerical simulation long
enough, so that the whole time course of X from Xðt� �Þ
to XðtÞ returns sufficiently close to the limit cycle in
calculating the asymptotic phase difference.

A crucial difference between the adjoint method and the
direct perturbation method should be emphasized here.
The adjoint method is semianalytic in the sense that it
directly solves a linear equation for Z itself, whereas the
direct perturbation method is semiexperimental and relies
on direct simulations of the perturbed system. The latter
method is vulnerable to incorrect estimations of the phase
response, because strong perturbations induce nonlinearity
in the phase response and weak perturbations result in tiny
phase responses that are difficult to measure accurately.
Therefore, the adjoint method has a great advantage in
computing Z for given mathematical models.

As the first example, we consider a second-order differ-
ential equation with a linear delay term and a cubic non-
linearity,

d2xðtÞ
dt2

¼ �
dxðtÞ
dt

þ 	xðtÞ þ 
xðt� �Þ þ �xðtÞ3: (11)

This is a simplified cortico-thalamic model for electroen-
cephalogram rhythms [7,8]. We take the parameters as

 ¼ �0:4, � ¼ �2:0, � ¼ �10:0, � ¼ 8:0, and vary 	 as
a control parameter. At 	 ¼ �0:051, this model undergoes
a Hopf bifurcation and yields a small amplitude limit cycle
in the vicinity of this bifurcation point. We here take 	 ¼
�0:039, which gives small amplitude oscillation. Then, the
center-manifold reduction is applicable to Eq. (11) and the
phase response function can be analytically obtained as

Zð�Þ ’ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�3�=4�
p

2 cos�=f��½1��� cotð��Þ�g, where
� ¼ 0:20 is the Hopf frequency and� ¼ 0:012 is a scaled
bifurcation parameter (see Ref. [8] for details).

Since Eq. (11) is a second-order differential equa-
tion, we denote the dynamical variables as XðtÞ ¼
ðxðtÞ; dxðtÞ=dtÞT and the limit-cycle solution as X0ðtÞ ¼
ðx0ðtÞ; dx0ðtÞ=dtÞT . Then, the functions F1ðtÞ and F2ðtÞ,
which are required for the adjoint Eq. (7) as well as for
the bilinear form Eq. (9), are given as

F1ðtÞ ¼ 0 1
	þ 3�x0ðtÞ2 �

� �
; F2ðtÞ ¼ 0 0


 0

� �
; (12)

respectively. Because F2ðtÞ is constant, the bilinear form
does not depend on time in this case. We compare the phase
response functions obtained by the adjoint method and by
the direct perturbation method with the analytical results in
Fig. 1 [28]. We can confirm that both the adjoint method
and the direct perturbation method give phase response
functions that agree well with the theoretical curve.
One characteristic feature of the DDEs is that even a very

simple equation can exhibit complex dynamics when the
parameter is far from the bifurcation point. The phase
reduction can still be applicable to such cases as long as
the coupling is weak, in contrast to the center-manifold
reduction that is valid only near the bifurcation point [8].
We here calculate Zð�Þ for such cases and use it to predict
the behavior of coupled oscillators. To see the system
behavior distant from the bifurcation point, we simulate
Eq. (11) at ð	;
Þ ¼ ð�0:1;�5:0Þwith � being varied as the
control parameter. When � is small, the origin is linearly
stable. As � is increased, the origin loses its stability and the
system starts to exhibit complex orbits. The time course of
xðtÞ and the orbit projected on the (x, dx=dt) plane are
plotted for � ¼ 2:5 [Figs. 2(a) and 2(b)] and for � ¼ 8
[Figs. 2(c) and 2(d)]. The orbit is more complex for larger
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FIG. 1 (color). (a) Limit-cycle oscillations and (b) the attractor
projected onto the (x, dx=dt) plane of the delay-induced limit
cycle exhibited by Eq. (11). (c) Zð�Þ with respect to perturba-
tions applied to the dx=dt component. Black broken line indi-
cates the analytical result obtained by the center-manifold
reduction (CMR). Blue curve and brown circles are the results
of the adjoint method and the direct perturbation method,
respectively.
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time delay (� ¼ 8). Zð�Þ obtained by the adjoint method
and by the direct perturbation method are plotted and com-
pared in Figs. 2(e) and 2(f). The adjoint method provides
appropriate Zð�Þ even when the parameters are far from the
bifurcation points.

We now consider two symmetrically coupled oscillators
and introduce a linear couplingLð _x2 � _x1Þ [orLð _x1 � _x2Þ] to
thevariablesx1ðtÞ [orx2ðtÞ]with coupling intensityL¼0:02.
The phase difference between the two oscillators �ðtÞ ¼
�1ðtÞ � �2ðtÞ then obeys _�ðtÞ ¼ �ðaÞ

L ð�Þ, where �ðaÞ
L ð�Þ ¼

�Lð�Þ � �Lð��Þ is given by the antisymmetric compo-
nent of the phase coupling function �Lð�Þ ¼
1
T

R
T
0 Zðtþ �=!ÞLð _x2ðtÞ � _x1ðtÞÞdt. Figures 2(g) and 2(h)

display �ðaÞ
L ð�Þ and the transient dynamics of the phase

difference for varying initial phase differences [� ¼ 2:5 for
(g) and � ¼ 8:0 for (h)]. It can be seen that initial phase
differences between two oscillators, which are uniformly
distributed initially, eventually converge to fixed phase dif-

ferences predicted from the function �ðaÞ
L ð�Þ [29]. The num-

ber of phase-locking points increases with �, reflecting the
increasing complexity of the limit-cycle orbit and Zð�Þ.
Thus, we can theoretically predict interesting phase-locking
characteristics of the coupled delay-induced limit-cycle
oscillations using Zð�Þ obtained by the adjoint method.

Next, we investigate a more complex model of gene
regulation in which nonlinear delayed feedback plays an
essential role,

dxðtÞ
dt

¼ k1S
ðKdÞp

ðKdÞp þ xðt� �Þp � k2ET

xðtÞ
Km þ xðtÞ : (13)

We choose the parameters k1 ¼ 1:0, k2 ¼ 1:0, S ¼ 2:0,
Kd ¼ 1:0, ET ¼ 1:0, Km ¼ 0:1, p¼2:0 and vary the time
delay � as a control parameter [15,28]. We restrict ourselves
to the situation where xðtÞ is positive. As � becomes larger,

the fixed point at xðtÞ ¼ 1:09 [30] loses stability and a limit-
cycle solution arises as shown in Figs. 3(a) and 3(b) for
� ¼ 5. In this case, F1 and F2 are given by

F1ðtÞ ¼ �k2ET

Km

½Km þ x0ðtÞ�2
;

F2ðtÞ ¼ �k1S
pðKdÞpx0ðt� �Þðp�1Þ

½ðKdÞp þ x0ðt� �Þp�2 ;
(14)

and therefore the bilinear form Eq. (9) is time dependent.
We numerically solve the adjoint problem and compare

the results with the direct perturbation method. As shown
in Fig. 3(c), both results are in good agreement. As a

further verification, we calculate hyðtÞ�0 ; dXðtÞ
0 =dt; ti over

an interval of 0 � t < T. This quantity gives the projection

of the velocity dXðtÞ
0 =dt of the limit cycle, which resides in

the infinite-dimensional function space C0, onto the direc-
tion along the limit-cycle orbit. It gives a scalar d�=dt,
which should be equal to the constant frequency !.

Figure 3(d) shows hyðtÞ�0 ; dXðtÞ
0 =dt; ti and compares it with

yðtÞ�0 ð0Þ½dXðtÞ
0 ð0Þ=dt�, i.e., a product with only the first term

of the bilinear form Eq. (9), which we might naively expect
as the projection onto the limit-cycle solution. We can see

that the proper combination hyðtÞ�0 ; dXðtÞ
0 =dt; ti (green line)

is actually kept constant, namely, the phase advances con-
stantly at a rate ! ¼ 0:365. In contrast, the quantity

yðtÞ�0 ð0Þ½dXðtÞ
0 ð0Þ=dt� (red curve) greatly fluctuates and

does not give the correct natural frequency !. Only when
this quantity is added to the second term of the bilinear
form Eq. (9) (blue curve), is the correct! is obtained. This
result also confirms the validity of the adjoint method
based on the bilinear form Eq. (9).
In summary, we developed an adjoint method that gives

the phase response function of limit-cycle oscillations
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FIG. 2 (color). (a)–(d) Time course of
xðtÞ and projection of the orbit on the (x,
dx=dt) plane for � ¼ 2:5 [(a) and (b)]
and � ¼ 8 [(c) and (d)]. (e),(f) Zð�Þ ob-
tained by the adjoint method (solid line)
and the direct perturbation method
(brown circles). [� ¼ 2:5(e) and � ¼
8(f)]. (g),(h) �ðaÞ

L ð�Þ and multimodal

phase locking of two coupled identical
oscillators. [� ¼ 2:5 (g) and � ¼ 8 (h)].
As � becomes large, the two oscillators
tend to synchronize at more various
phase differences. Each color indicates
the predicted basin that converges to the
same stationary phase difference pre-
dicted by the adjoint method (upper pan-
els), which is confirmed by the numerical
simulations (lower panels).
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exhibited by DDEs. We confirmed the validity of the
method by comparing the results with those obtained by
direct perturbation methods as well as by analytical com-
putations near the bifurcation point. As examples, we
considered biological oscillations in cortico-thalamic and
gene-regulatory models, and demonstrated that the method
works nicely for these systems. Moreover, we revealed that
intriguing multimodal phase-locking states can occur, in
which the number of the stable phase shifts increases with
the time delay in the cortico-thalamic model.

Our present study provides a practical theoretical frame-
work to systematically analyze synchronization of weakly
coupled delay-induced limit-cycle oscillators, which would
serve as a powerful tool in investigating synchronization of
brain activities and entrainment of circadian rhythms to day-
light. More detailed investigations on networks of such bio-
logical oscillators with stochastic fluctuations and their
biological relevance will be discussed elsewhere. Delay dif-
ferential equations are used to describe diverse phenomena in
science and engineering, and therefore the adjoint method
developed in this study should have a wide applicability.
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FIG. 3 (color). (a) Time course of xðtÞ. (b) Projection of the
orbit on the (x, dx=dt) plane. (c) Zð�Þ obtained by the adjoint
method (solid line) and the direct perturbation method (brown
circles). (d) Projection of the velocity dx=dt onto the phase

component by the bilinear product hyðtÞ�0 ; dXðtÞ
0 =dt; ti ¼ d�=dt.

The red curve and the blue curve show the first term and the
second term of the bilinear form Eq. (9), respectively. The green
curve shows the whole bilinear product.
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