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When a neuron receives a randomly fluctuating input current, its reliability of spike generation improves
compared with the case of a constant input currentfMainen and Sejnowski, Science268, 1503s1995dg. This
phenomenon can be interpreted as phase synchronization between uncoupled nonlinear oscillators subject to a
common external input. We analyze this phenomenon using dynamical models of neurons, assuming the input
current to be a simple random telegraphic signal that jumps between two values, and the neuron to be always
purely self-oscillatory. The internal state of the neuron randomly jumps between two limit cycles correspond-
ing to the input values, which can be described by random phase maps when the switching time of the input
current is sufficiently long. Using such a random map description, we discuss the synchrony of neural oscil-
lators subject to fluctuating inputs. Especially when the phase maps are monotonic, we can generally show that
the Lyapunov exponent is negative, namely, phase synchronization is stable and reproducibility of spike timing
improves.
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I. INTRODUCTION

It was shown by Mainen and Sejnowski in an experiment
using rat neocortical slices that, when a neuron receives a
randomly fluctuating input current, its reliability of spike
generation improves compared with the case of a constant
input currentf1g. Namely, when a single neuron is driven by
the same temporal sequence of a fluctuating input current, it
yields very similar firing patterns at every trial, but when it is
driven by a constant input current, it yields different firing
patterns from trial to trial. This phenomenon has been repeat-
edly confirmed in many experiments, and its physiological
relevance has been discussedf2,3g.

From the viewpoint of nonlinear dynamics, a periodically
spiking neuron driven by a constant external current is a
limit-cycle oscillatorf4–14g. A spike is generated when the
phase of this limit cycle passes through a certain threshold
value. We can interpret repeated measurements on a single
neuron using the same input current as a single measurement
on multiple identical neural oscillators, which are mutually
independent but receive a common external input. The re-
sulting improvement in spike timing corresponds to the
phase synchronization of those uncoupled oscillators with a
common external forcing. The difference in the timing of
spike generation between different trials is due to the neutral
stability of the limit-cycle orbit in the phase direction, in
which the phase diffuses due to external disturbances. On the
other hand, a neuron driven by a fluctuating input current is
a random dynamical system. The improvement in spike tim-
ing implies some underlying mechanism that statistically sta-
bilizes the limit-cycle orbit in the phase direction due to the
fluctuating input. Similar situations have also been discussed

regarding synchronization of uncoupled chaotic oscillators
driven by a common random forcingf15–18g.

Due to the difficulty in analyzing multivariable dynamical
models of neurons, most theoretical studies so far have relied
upon direct numerical simulations of specific models such as
the van der Pol modelf8g and the FitzHugh-Nagumo model
f9g, or have assumed one-variable integrate-fire models or
qualitative phase models of neuronsf10–13g. Those studies
revealed that this phenomenon can be observed commonly in
a wide variety of limit-cycle oscillators that are subject to
external fluctuations.

Recently, Teramae and Tanakaf14g made significant
progress in understanding the universality of this phenom-
enon. Using the phase reduction methodf4,5g, they proved in
general that limit-cycle oscillators always exhibit phase syn-
chronization when they are subject to very weak Gaussian-
white forcing. The standard phase reduction procedure can
only be applicable when the deformation of the limit cycle is
very small f4,5g. Therefore, in their analysis, fluctuation of
the input was assumed to be vanishingly small, so that it did
not affect the structure of the limit cycle. However, in many
dynamical models of neurons, the input current is a bifurca-
tion parameter whose variation easily leads to deformation of
their limit-cycle orbits.

In this paper, we treat this problem in a different setting.
In order to make a general statement about phase synchroni-
zation, we consider a simplified situation. That is, we assume
the input current to be a simple random telegraphic signal
that jumps between two values, and also the neuron to al-
ways be self-oscillatory. The fluctuation need not be vanish-
ingly small. Owing to these assumptions, we can reduce the
dynamics of the system to simple random maps. Though
these assumptions are not physiologically realistic, they en-
able us to understand the phase synchronization of limit-
cycle oscillators due to a common fluctuating input more
generally from the viewpoint of nonlinear dynamics.*Electronic address: nakao@ton.scphys.kyoto-u.ac.jp
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II. PHASE SYNCHRONIZATION INDUCED BY
FLUCTUATING CURRENTS

In this section, using the FitzHugh-Nagumo neuron model
f6g as an example, we demonstrate that the reproducibility of
spike timing improves even if we use a random telegraphic
signal that jumps between only two values instead of taking
continuous values. Let us consider the following FitzHugh-
Nagumo model subject to a fluctuating input current and also
to external disturbances:

«u̇ = v + A − Bu+ jstd,

v̇ = v −
v3

3
− u + Istd + hstd. s1d

Here, the variablesu andv represent refractoriness and acti-
vation sor membrane potentiald of the neuron,« is a small
dimensionless parameter that corresponds to the time con-
stant of the refractoriness variable, andA andB are param-
eters.Istd represents a time-dependent input current to the
neuron.jstd and hstd are Gaussian-white noises of mean 0
and varianceD that are introduced to represent various ex-
ternal disturbances to the neuron, whose correlation func-
tions are given by

kjstdjst8dl = Ddst − t8d, khstdhst8dl = Ddst − t8d. s2d

We fix the parameters at«=0.08, A=0.7, B=0.8, and the
noise strength atD=10−6 unless specified otherwise.

When the input currentIstd takes a constant valueIstd
; I0, this FitzHugh-Nagumo model exhibits limit-cycle os-
cillations for 0.33ø I0ø1.42. We define the time of spike
generation for this FitzHugh-Nagumo oscillator as the mo-
ment at which the variablev changes its sign fromv,0 to
v.0 on the limit cycle. We take this point as the origin, and
define a phase that increases with a constant angular velocity
along the limit cyclessee the next sectiond f4,5g.

The fluctuating input currentIstd is generated by a random
telegraphic process, which jumps between two valuesI1 and
I2 at random moments following a Poisson processf19g. If
we denote byn the probability forIstd to change its value in
an infinitesimal time intervaldt, the distributionPsTd of the
time interval T during which Istd stays at one of the two
values is exponential

PsTd =
1

t
expS−

T

t
D , s3d

wheret=n−1 represents the mean switching time ofIstd.
Figure 1 shows temporal evolution of an ensemble of 50

noisy FitzHugh-Nagumo oscillators described by Eq.s1d
subject to a constant input currentIstd;0.9 for 50 trials on a
single oscillator using the sameIstdg, where the activation
variablev, the phase, the moments of spike generation, and
the variance of the phase are plotted. Though all oscillators
start from the same initial condition, the phases of the oscil-
lators disperse considerably due to the external noisesjstd
and hstd after a long time. Correspondingly, the timing of
spike generation differs considerably among the oscillators,
and the variance of the phase is consistently large.

On the other hand, Fig. 2 shows temporal evolution of the
same 50 FitzHugh-Nagumo oscillators subject to a common
fluctuating input currentIstd that jumps betweenI1=0.8 and
I2=1.0. Here, the phase defined along the limit cycle corre-
sponding to Istd= I1 is used in drawing the figure. The
switching time is set att=n−1=200, which is about 5 times
larger than the period of the FitzHugh-Nagumo oscillator
sapproximately 36.5 atI1=0.8d. In this case, dispersion of the
phase is strongly suppressed. The spike timing coincides
well among the oscillators, and the variance of the phase
takes very small values except during several short intervals.
From this figure, it is evident that the phase synchronization
of the oscillatorssand corresponding improvement in spike
timingd occurs even ifIstd takes only two values and the
oscillators are always self-oscillatory.

FIG. 1. Temporal evolution of activation variablev, phase, tim-
ing of spike generation, and variance of the phase for a constant
input currentIstd;0.9. Results of 50 trials on a single FitzHugh-
Nagumo oscillatorsor a single trial on 50 independent oscillatorsd
are shown in each figure, except the bottom figure.

FIG. 2. Temporal evolution of activation variablev, phase, tim-
ing of spike generation, and variance of the phase for a fluctuating
input currentIstd that jumps betweenI1=0.8 andI2=1.0. Results of
50 trials on a single FitzHugh-Nagumo oscillator are shown in each
figure, except the bottom figure.
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III. REDUCTION TO RANDOM PHASE MAPS

In this section, we reduce the dynamics of our limit-cycle
oscillators driven by a random telegraphic current to random
phase maps, and discuss its stability in the phase direction.
We adopt the FitzHugh-Nagumo neuron modelfEq. s1d with-
out the external noise termsjstd andhstdg as an example, but
our argument itself is generally applicable to a wide class of
limit-cycle oscillators.

A. Random phase maps between limit cycles

Corresponding to two values ofIstd, our system jumps
between two phase spaces, namely, a phase space corre-
sponding toIstd= I1 that has a limit cycle “1”sLC1d, and
another phase space corresponding toIstd= I2 that has a limit
cycle “2” sLC2d; see Fig. 3. When the switching timet of
Istd is much larger than the relaxation time of the orbit to the
limit cycle on each phase space, our system is almost always
on one of the limit cycles. If a phase is defined on each limit
cycle, the temporal evolution of the system can be described
as an alternate phase mapping between two limit cycles.

Following standard proceduref4,5g, we define two phases
u1 and u2 on LC1 and LC2, respectively. Each phase in-
creases with a constant angular velocity on its limit cycle,
and is normalized by the period of the limit cycle so that its
range isf0,1g, where 0 and 1 represent the same phase. The
definition of the phase can be extended to general phase-
space points that are not right on the limit cycle except phase
singular points. It is achieved by identifying such a pointP
in the phase space with a pointQ right on the limit cycle in
such a way that an orbit starting fromP and another starting
from Q asymptotically coincide. A set of points that have
equal phase is called an isochron. On the limit cycles, the
phases evolve according to

u̇1 = v1, u̇2 = v2, s4d

where v1 and v2 are angular velocities of LC1 and LC2.
When Istd is constant, perturbation in the phase direction is

neutrally stable. Therefore, in the presence of external distur-
bances, the phase perturbation gradually increases, resulting
in different spike timing between trials.

Let us consider the situation in which the input current is
Istd= I1 and the system has phaseu1 on LC1. WhenIstd is
switched toIstd= I2, the system is on a certain isochron of
LC2 whose phase isu2, and it gradually approaches LC2.
Thus, a point on LC1 at phaseu1 is mapped to a new point
on LC2 at phaseu2. We denote this map asu2= f1su1d. Simi-
larly, we denote the map from a point on LC2 at phaseu2 to
a new point on LC1 at phaseu1 by u1= f2su2d.

Figure 3 shows LC1 and LC2 of the FitzHugh-Nagumo
model atI1=0.8 andI2=1.0, where the mapping from LC1 to
LC2 is shown by arrows. Figure 4 shows corresponding
phase mapsu2= f1su1d andu1= f2su2d between LC1 and LC2.
For comparison, a trivial identity map forI1= I2=0.9 is also
shown. In drawing the maps, the origin of each limit cycle is
arbitrarily shifted for simplicity so thatu1=0 of LC1 is
mapped tou2=0 of LC2 and vice versa. This does not affect
the stability analysis given below.

Let us start from the moment at whichIstd switches from
I1 to I2. Istd maintains the valueI2 for a duration ofT2, then
switches toI1 and maintains this value for a duration ofT1.
During this switching process, the pointu1 on LC1 is
mapped to the pointu2= f1su1d on LC2 first, then it is
mapped to the new pointf1su1d+v2T2 on LC2 by the con-
stant increase of the phase, Eq.s4d. This point is then
mapped back to the pointf2(f1su1d+v2T2) on LC1, and fi-
nally mapped tof2(f1su1d+v2T2)+v1T1 by the constant in-
crease of the phase, Eq.s4d. If we denote the phase on LC1
immediately after thenth switching ofIstd to I1 asu1snd, and
the phase on LC2 immediately after the succeeding switch-
ing of Istd to I2 asu2snd, they obey

u2snd = f1„u1snd… + v2T2, u1sn + 1d = f2„u2snd… + v1T1.

s5d

Since T1 and T2 are random numbers whose distribution
PsTd obeys Eq.s3d, these equations describe random maps.

FIG. 3. Limit cycles of the FitzHugh-Nagumo model atIstd
; I1=0.8 andIstd; I2=1.0. Points on the limit cycle 1 and their
images on the limit cycle 2 are connected by arrows.

FIG. 4. Phase mapsu2= f1su1d from LC1 to LC2, andu1

= f2su2d from LC2 to LC1 for I1=0.8 andI2=1.0. Origins of the
maps are shifted arbitrarily for simplicity. Trivial identity map for
I1= I2=0.9 is also shown.
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The time stepn is roughly related to the actual timet as n
. t /2t, because the mean switching time ist.

Evolution of probability density functionssPDFsd
r1su1,nd and r2su2,nd of the phasesu1 and u2 is given by
two Frobenius-Perron equations convoluted with transition
kernels that represent random shifting on LC1 and on LC2
during random durationsT1 andT2 f20g

r2su2,nd =E du28W2su2 − u28d E du18dfu28 − f1su18dgr1su18,nd,

r1su1,n + 1d =E du18W1su1 − u18d E du28dfu18

− f2su28dgr2su28,nd. s6d

Here,W1 andW2 are given by

W1su1d = o
j=0

`

PSu1 + j

v1
D 1

v1

=
e−u1/sv1td

v1ts1 − e−1/sv1tdd
s0 ø u1 ø 1d,

W2su2d = o
j=0

`

PSu2 + j

v2
D 1

v2

=
e−u2/sv2td

v2ts1 − e−1/sv2tdd
s0 ø u2 ø 1d . s7d

The PDFs are expected to reach stationary statesr1su1d and
r2su2d sufficiently after the initial transient stage. But, it is
generally difficult to calculate these stationary PDFs analyti-
cally even if the mapsf1 and f2 have simple functional
forms. However, in the limit of large switching timet of Istd,
we haveW1su1d→1 and W2su2d→1; hence, the stationary
PDFsr1su1d andr2su2d approach uniform distributions in the
large-t limit

r1su1d → 1, r2su2d → 1. s8d

Thus, whent is sufficiently large, they can be approximated
by uniform distributions.

B. Lyapunov exponent

Improvement in spike timing is a result of statistical sta-
bilization of the orbit against phase perturbations. Such sta-
bility is characterized by the Lyapunov exponent of the ran-
dom maps, Eq.s5d. Let us consider temporal evolution of
small deviationsDu1snd andDu2snd from the original orbits
u1snd and u2snd. These small deviations obey the following
equations in the linear regime:

Du1sn + 1d = f28„u2snd…Du2snd = f28„u2snd…f18„u1snd…Du1snd,

Du2sn + 1d = f18„u1sn + 1d…Du1sn + 1d

= f18su1sn + 1ddf28„u2snd…Du2snd, s9d

where f18(u1snd)=sdf1/du1du1=u1snd and f28(u2snd)

=sdf2/du2du2=u2snd. Thus, at large time stepsn, Du1snd ex-
pands as

UDu1snd
Du1s0d

U = p
m=0

n−1

uf28„u2smd…u · uf18„u1smd…u

= expFo
m=0

n−1

loguf28„u2smd…u + o
m=0

n−1

loguf18„u1smd…uG
. expfsl2 + l1dng, s10d

where we introduced Lyapunov exponents of the mapsf1 and
f2

l1 = kloguf18su1dul =E
0

1

r1su1dloguf18su1dudu1,

l2 = kloguf28su2dul =E
0

1

r2su2dloguf28su2dudu2. s11d

Du2snd also evolves in the same way. If the total Lyapunov
exponentl=l1+l2 is negative,Du1snd andDu2snd shrink on
average, so that the deviations from the original orbits
caused by external disturbances are canceled. Thus, the value
of l gives aslocald condition for the phase synchronization
between limit cycles, and improvement in spike timing.

C. Asymptotic stability in the slow switching limit

As mentioned previously, even if the functional forms of
f1 and f2 are explicitly given, it is not easy to calculate the
stationary PDFsr1su1d and r2su2d analytically, and the
Lyapunov exponentl which depends on them. However,
when the switching timet of Istd is sufficiently large, the
stationary PDFs of the phases are nearly uniformfsee Eq.
s8dg. In this limit, we can obtain sufficient conditions of
phase synchronization for generalf1 and f2: when the phase
maps f1 and f2 are monotonic, the Lyapunov exponentl is
always nonpositive.

For example, when they aresstrictlyd monotonically in-
creasing

f18su1d . 0, f28su2d . 0, s12d

we can prove thatl1 is always nonpositive as

l1 =E
0

1

log f18su1ddu1 ø E
0

1

ff18su1d − 1gdu1

=E
0

1

f18su1ddu1 − 1 = 0, s13d

where we utilized the fact thate0
1f18su1ddu1= f1s1d− f1s0d=1

becausef1su1d is a phase map. The equality holds only when
f1su1d=u1, namely, when the phase map is a trivial identity
map. The similar argument also holds forl2. Thus, for
monotonically increasingf1 and f2

l1 ø 0, l2 ø 0, s14d

always holds, so that the total Lyapunov exponentl=l1
+l2 is always nonpositive. We can also prove thatl is al-
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ways nonpositive when the phase maps are monotonically
decreasing by a similar argument. Therefore, small devia-
tions from the original orbits always shrink by applying a
slowly switching input current, when the phase maps be-
tween limit cycles are monotonic.

IV. PHASE DIAGRAMS

In this section, following our previous argument, we nu-
merically calculate phase mapsf1 and f2 for three different
neuron models, and draw phase diagrams of phase synchro-
nization in theI1–I2 plane.

A. FitzHugh-Nagumo model

First, we present results for the FitzHugh-Nagumo model.
The input currentsI1 and I2 are varied between 0.4 and 1.4.
The system always exhibits limit-cycle oscillation between
these values. Figure 5 displays a phase diagram of the
FitzHugh-Nagumo model in theI1–I2 plane, where four dif-
ferent domains represent four combinations ofsid whether
the mapsf1 and f2 are monotonic, andsii d the sign of the
Lyapunov exponentl calculated fromf1 and f2 assuming
uniform phase distribution. On the diagonalI1= I2, f1 and f2
are trivial identity maps. In this casel is not negative but
equals zero, thoughf1 and f2 are monotonically increasing.
In the diamond region around the diagonal,l is negative
from our previous discussion, becausef1 and f2 are mono-
tonically increasing. In the outer region,f1 and f2 are not
monotonic butl is still negative. In the upper-right and
lower-left narrow regions,f1 and f2 are not monotonic, andl
is positive. Therefore, if we switch the input current in these
small regions, dispersion of the phase is enhanced, and the
spike timing becomes more scattered than the case of a con-
stant input current.

Figure 6 shows temporal evolution of small deviations
klnuDu1std /Du1s0dul that are calculated using Eq.s1d without
external noises. Three pairs of input currents are chosen from
three different domains in the phase diagram:sid I1
=0.80,I2=1.0sl,0d; sii d I1=0.90,I2=0.90sl=0d; and siii d
I1=0.34,I2=0.40sl.0d.The small initial deviation is set at
Du1s0d=0.01v1, where the periodT1=v1

−1 of LC1 is ap-
proximatelyT1=36.5 for I1=0.80,T1=36.4 for I1=0.90, and
T1=46.8 for I1=0.34. Temporal sequences of the deviation
are numerically averaged over 15 000 realizations of the ran-
dom telegraphic current. For each pair of the input currents,
three curves corresponding to three different values of the
switching time,t=n−1=2000, 1000, and 500, are shown. By
using rescaled timet /2t.n, those curves for different val-
ues oft roughly collapse to a single curve, which indicates
that our argument also holds, at least approximately, for large
but finite t. It can clearly be seen that the deviation grows,
shrinks, or stays constant corresponding to the three values
of the Lyapunov exponent.

FIG. 7. Phase diagram of the Hindmarsh-Rose model. Presented
in the same way as in Fig. 5.

FIG. 5. Phase diagram of the FitzHugh-Nagumo model where
four different domains are shown in different gray levels or colors.
On the diagonal, the maps are monotonic andl.0. In the diamond
region around the diagonal, the maps are monotonic andl,0. In
the outer regions, the maps are not monotonic but stilll,0. In the
top-right and bottom-left small regions, the maps are not monotonic
andl.0.

FIG. 6. Temporal evolution of small deviations in the FitzHugh-
Nagumo model, where the input currents aresid I1=0.80,I2

=1.0sl,0d; sii d I1=0.90;I2=0.90sl=0d; and siii d I1=0.34,I2

=0.40sl.0d. For each pair of the input currents, three curves cor-
responding tot=n−1=2000, 1000, and 500 are plotted.
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Thus, by calculating phase maps, we can draw a phase
diagram of phase synchronization. Especially in the vicinity
of the diagonal whereI1 and I2 are close,l is always nega-
tive, and phase synchronization induced by a fluctuating in-
put occurs. For this FitzHugh-Nagumo model, the phase syn-
chronization also occurs in a wide parameter region, where
phase maps are not monotonic. This is due to the topological
constraint of this model. Since its phase space dimension is
only 2, the expansion of phase difference is suppressed even
if the phase maps become nonmonotonic.

B. Other neuron models

Here, we present results for the Hindmarsh-Rose model
and for the Hodgkin-Huxley model of spiking neurons.

The Hindmarsh-Rose model is given by the following
three-variable equationsf21g:

ẋ = y − ax3 + bx2 + Istd − z,

ẏ = c − dx2 − y,

ż= rfssx − x1d − zg, s15d

wherex represents membrane potential,y represents recov-
ery variable due to fast ion channels, and the third variablez
represents relaxation current due to slow ion channels that
are important for burst spiking. The parameters are fixed at
a=1, b=3, c=1, d=5, r =0.006, s=4, and x1=−1.6. This
model exhibits various self-oscillatory states for a constant
input Istd; I0 when 1.31, I0,25.3.

Figure 7 displays a phase diagram of this model in the
I1–I2 plane in the same way as Fig. 5 of the FitzHugh-
Nagumo model, whereI1 andI2 are varied between 6 and 13.
As in the case of the FitzHugh-Nagumo model, the
Lyapunov exponentl is zero on the diagonal, and is negative
in the vicinity of the diagonal where the phase maps are
monotonically increasing. Thus, this model also possesses
parameter regions where phase synchronization induced by a
fluctuating input current occurs. In the outer regions the
phase maps are not monotonic, andl takes both positive and

FIG. 8. Phase diagram of the Hodgkin-Huxley model. Presented
in the same way as in Fig. 5.

FIG. 9. Phase mapsu2= f1su1d
and u1= f2su2d of the Hodgkin-
Huxley model for several pairs of
the input currentsI1 and I2: sad
I1=11.1,I2=12.9; sbd I1=11.0,I2

=13.0; scd I1=10.9,I2=13.1; and
sdd I1=10.8,I2=13.2. Origins of
the maps are arbitrarily shifted.
Trivial identity map for I1= I2

=12 is also shown in each figure.
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negative values. A small number of irregular points around
the borders between domains are due to numerical errors.
When compared with the FitzHugh-Nagumo model, there
exist relatively wider regions in which the Lyapunov expo-
nent becomes positive.

The Hodgkin-Huxley model is given by the following
equations for four variablesf6g:

CmV̇ = GNam
3hsENa − Vd + GKn4sEK − Vd

+ GmsVrest− Vd + Istd,

ṁ= ams1 − md − bmm,

ḣ = ahs1 − hd − bhh,

ṅ = ans1 − nd − bnn, s16d

whereV is the membrane potential,m andh represent acti-
vation of the sodium channel, andn represents activation of
the potassium channel. ParametersGNa, GK, andGm repre-
sent conductances of the channels,ENa, and EK represent
their reversal potentials, andVrest represents the rest voltage.
ax, bxsx=m,h,nd are rate constants that are given by the
following equations:

am =
0.1s25 −vd

expS25 −v
10

D − 1

, bm = 4expS−
v
18
D ,

ah = 0.07expS−
v
20
D, bh =

1

expS30 −v
10

+ 1D ,

an =
0.01s10 −vd

expS10 −v
10

D − 1

, bn = 0.125expS−
v
80
D . s17d

The parameters are fixed atGNa=120, ENa=115, GK =36,
EK =−12, Gm=0.3, Vrest=10.613, andCm=1.0. Given a con-
stant input currentIstd; I0, this model exhibits limit-cycle
oscillation whenI0.8.9.

Figure 8 displays a phase diagram in theI1–I2 plane. I1
and I2 are varied between 10 and 20, where the system ex-
hibits limit-cycle oscillation. Similarly to the two previous
cases, the Lyapunov exponentl is roughly zero on the diag-
onal. In the vicinity of the diagonal, the phase maps are
monotonic; hence,l is negative. In the outer region the
phase maps become nonmonotonic andl takes both positive
and negative values. Due to numerical errors, borders be-
tween different domains are somewhat blurred.

Since phase-space dimensions of the Hindmarsh-Rose
model and the Hodgkin-Huxley model are larger than 2, the
topological constraint is less tight for these models. Thus, the
maps between two limit cycles can easily be complex when
they become nonmonotonic, resulting in the enhancement of
phase dispersion due to fluctuating input currents. For ex-
ample, Figs. 9sad–9sdd show deformation of the phase maps
of the Hodgkin-Huxley model when the input currents are
varied, so that the difference betweenI1 and I2 gradually
increases. AtI1=10.8 andI2=13.2 fFig. 9sddg, the map be-
comes sufficiently complex for the Lyapunov exponentl to
become positive.

V. INTERMITTENT DESYNCHRONIZATION

It can be seen from Eq.s9d that the deviationsDu1 and
Du2 obey random multiplicative dynamics if we take fluctua-
tion of the multipliers into account. Thus, they are expected
to exhibit characteristic behavior called on-off intermittency
at long time scalesf7,16,22–25g. The deviations decrease on
average whenl,0. However, when small additive external
noises are present in the system as in Eq.s1d, they are
bounded from below at the external noise level. Therefore,
by random multiplication due to fluctuating currents, the
phase deviations occasionally grow from this lower bound
rapidly to the upper bound determined by the nonlinearity of
the system, resulting in repetitive transient burstingsnoisy
on-off intermittencyd.

There have been a number of studies on this phenomenon,
which have shown that the distributionPssd of the amplitude
s of the deviation obeys a power law, and also that the dis-
tribution Psld of the laminarsinterburstd interval l during
which the fluctuations takes values lower than a certain
threshold obeys a power law of the forml−1.5 f7,16,22–25g.

Let us demonstrate this using the FitzHugh-Nagumo
model, Eq.s1d. If we consider an ensemble of many oscilla-
tors subject to a common external input, the phase difference

FIG. 10. Noisy on-off intermittency exhibited by an ensemble of
50 FitzHugh-Nagumo oscillators subject to a fluctuating current.
Parameters are the same as that used in Fig. 2, and the noise
strength isD=10−7. sad Temporal sequence of the phase variance
sstd. sbd Distribution Psld of the laminar intervalsl obtained from
sstd. The threshold value used to separate bursts from laminar re-
gion is sth=0.5. Theoretical power lawl−1.5 is also shown for com-
parison.scd Distribution Pssd of the phase variances obtained from
sstd. A power-law curves−1.3 is also shown for comparison.
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between any pair of oscillators exhibits noisy on-off intermit-
tency. Thus, the variance of the whole ensemble of oscilla-
tors also exhibits similar temporal intermittency. Such inter-
mittency of the distribution function is reported, e.g., by
Teramae and Kuramotof14g for globally coupled chaotic
maps.

Figure 10sad displays a temporal sequence of the phase
variancesstd of 50 FitzHugh-Nagumo oscillators. The pa-
rameters are the same as those in Fig. 2, and the phase de-
fined on LC1 is used. The variancesstd is almost always very
small, indicating that the ensemble of oscillators is well syn-
chronized in phase. However, it occasionally takes a very
large value, which indicates that the ensemble exhibits burst-
like desynchronization of the phases. Figures 10sbd and 10scd
display the distributionPsld of the laminar intervals and the
distributionPssd of the burst amplitudes obtained from such
time sequences. The characteristic power-law behavior of
those distribution functions is confirmed.

VI. SUMMARY

We analyzed phase synchronization exhibited by a self-
oscillatory neuron model subject to a random telegraphic in-
put current by reducing the dynamics of the system to ran-
dom maps. We proved that when the maps between limit
cycles are monotonic and the mean switching time of the
input current is sufficiently large, the Lyapunov exponent of
the system always becomes negative, leading to phase syn-
chronization and improvement in spike timing. This result is
not restricted to a special class of neurons, but generally

holds for a wide variety of limit-cycle oscillators.
In this paper, we only treated the case in which the

switching timet is sufficiently large. We need further discus-
sions to treat smallert values, for which the PDFs of the
phases are generally not uniform on the limit cycles. There-
fore, we need to estimate the stationary PDFsr1su1d and
r2su2d from Eq.s6d in some way, for example, by using some
kind of perturbation method. Also, we considered only a ran-
dom telegraphic current in this paper, namelyIstd, that jumps
between only two values. Generalization to the case in which
Istd takes multiple or continuous values is necessary to treat
experimental situations more realistically.

Phase synchronization induced by fluctuating external in-
put seems to be a universal phenomenon that is not restricted
to specific dynamical models of neurons. The paper by Tera-
mae and Tanakaf14g generally proved this fact for a vanish-
ingly weak external Gaussian-white forcing. In this paper,
we proved this fact in a different situation, where the forcing
can take only two values which are not necessarily infinitesi-
mal. We also found that the dispersion of phases could be
enhanced when the fluctuating input is not vanishingly small.
A more general formulation of this problem that includes the
above two situations as special cases is desirable. Studies in
this direction are now in progress, and will be reported in the
future.
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