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Optimization of the stability of synchronized states between a pair of symmetrically coupled reaction-diffusion
systems exhibiting rhythmic spatiotemporal patterns is studied in the framework of the phase reduction theory.
The optimal linear filter that maximizes the linear stability of the in-phase synchronized state is derived for the case
in which the two systems are nonlocally coupled. The optimal nonlinear interaction function that theoretically
gives the largest linear stability of the in-phase synchronized state is also derived. The theory is illustrated by
using typical rhythmic patterns in FitzHugh-Nagumo systems as examples.
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I. INTRODUCTION

Synchronization of rhythmic systems is widely observed in
the real world, and it has been studied extensively in various
areas of science and engineering [1–7]. In biological systems,
synchronization often plays significant functional roles, such
as the generation of heartbeats, rhythmic gaits, and circadian
rhythms. In some engineering systems, synchronization is a
precondition for their functionality, where power grids provide
a well-known example.

Recently, synchronization between nonconventional self-
oscillatory systems has attracted considerable attention, e.g.,
dynamical systems with time-delayed feedback [8,9], spatially
extended reaction-diffusion systems [10–12], and fluid sys-
tems [13–15]. In analyzing the synchronization properties of
rhythmic systems described as weakly perturbed limit-cycle
oscillators, the phase reduction theory has been used as a
standard method for clarifying their mechanisms [1–6,16–18].
Recent developments in the phase reduction theory [8–10,13]
have shown that, even if the state space of the rhythmic system
is infinite-dimensional, it can still exhibit synchronization in a
similar way to low-dimensional oscillators as long as it exhibits
stable limit-cycle oscillation.

In this study, we consider synchronization of reaction-
diffusion systems exhibiting rhythmic spatiotemporal patterns.
Reaction-diffusion systems have played important roles in
modeling a variety of spatiotemporal patterns that arise
in chemical and biological systems [19–25]. Among them,
rhythmic spatiotemporal patterns such as oscillating spots,
target waves, and rotating spirals can be regarded as stable
limit-cycle oscillations of reaction-diffusion systems. Syn-
chronization between rhythmic spatiotemporal patterns has
been realized experimentally using coupled electrochemical
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systems exhibiting reaction waves of H2O2 reduction on Pt
ring electrodes, where two waves are coupled via the common
chemical solution [11], and coupled photosensitive Belousov-
Zhabotinsky systems exhibiting spiral patterns, where the two
patterns are coupled via video cameras and projectors [12] (see
also [19,26–30]). Synchronization of rhythmic fluid flows has
also been studied, and its possible importance with regard to
the global climate has been argued [14,15].

In our recent work [10], we generalized the conventional
phase reduction theory for finite-dimensional limit-cycle oscil-
lators to limit-cycle oscillations of reaction-diffusion systems
with infinite-dimensional state space. Using the theory, we
derived the phase sensitivity function, which characterizes the
linear phase response of the rhythmic pattern to weak perturba-
tions, and we analyzed mutual synchronization between a pair
of reaction-diffusion systems coupled by linear diffusive inter-
action. We also developed similar phase reduction theories for
the collective oscillations in globally coupled noisy oscillators
[31] and for oscillatory thermal convection in a Hele-Shaw cell
[13]. Moreover, we analyzed synchronization between nonin-
teracting convection cells exhibiting oscillatory thermal con-
vection caused by common noise, and we derived the optimal
input pattern for stable noise-induced synchronization [32].

In this study, we consider the case in which a pair
of reaction-diffusion systems, both of which are exhibiting
rhythmic spatiotemporal patterns, are mutually coupled via
weak symmetric interaction. In the case of the simplest
linear diffusive interaction, where every point of the system
is coupled to a corresponding point of the other system,
we have shown that the two systems can undergo mutual
synchronization [10]. However, the phase sensitivity function
of the rhythmic pattern is often strongly localized in space,
and introducing interaction at every point in the system
as in Ref. [10] would not be generally efficient. In this
study, we aim to clarify the theoretical limit of efficiency
in synchronizing rhythmic patterns via mutual coupling by
seeking optimal interaction schemes that realize stable in-
phase synchronization between two reaction-diffusion systems
in the framework of the phase reduction theory.
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Regarding the optimization of synchronization, optimal
input signals that efficiently entrain a limit-cycle oscillator de-
scribed by ordinary differential equations have been obtained
for various situations [33–42]. Also, in our preceding article,
we derived optimal cross-coupling matrices that maximize
the linear stability of the synchronized states in a pair
of diffusively coupled limit-cycle oscillators described by
ordinary differential equations [43]. In this paper, we further
generalize the analysis to a pair of coupled reaction-diffusion
systems exhibiting rhythmic patterns, and we try to derive
the optimal interaction function. We first restrict ourselves
to a practical situation in which the interaction between the
two systems is linear, and we derive the optimal filtering
function for stable synchronization. We then derive the optimal
nonlinear interaction function between the systems to clarify
the theoretical limit to the improvement of stability. The results
are illustrated by using rhythmic spatiotemporal patterns
in FitzHugh-Nagumo reaction-diffusion systems, that is, a
traveling pulse and an oscillating spot in one dimension, and
a rotating spiral in two dimensions.

II. THEORY

A. A pair of mutually coupled reaction-diffusion systems

We consider a pair of mutually coupled m-component
reaction-diffusion systems in d-dimensional space exhibiting
stable limit-cycle oscillations (see the figures for typical
rhythmic spatiotemporal patterns of the FitzHugh-Nagumo
reaction-diffusion systems), described by

∂

∂t
X1(r,t) = F(X1,r) + D̂∇2 X1(r,t)

+ ε

∫
V

d r ′Â(r,r ′)X2(r ′,t),

∂

∂t
X2(r,t) = F(X2,r) + D̂∇2 X2(r,t)

+ ε

∫
V

d r ′Â(r,r ′)X1(r ′,t), (1)

in some spatial domain V ⊂ Rd . Here, r ∈ Rd is the spatial
location, t ∈ R is the time, X1,2 : Rd × R → Rm are the
spatial patterns of the systems, i.e., the system states, F :
Rm × Rd → Rm represents the dynamics of the system,
D̂ ∈ Rm×m is a matrix of diffusion constants, and ∇2 is the
Laplacian operator. For simplicity, we consider two identical
systems whose dynamics are described by the same function
F and diffusion matrix D̂, and we also assume that they
are symmetrically coupled. The dynamics F can depend on
the location r , e.g., the excitability of the system can be
different from place to place. The last term on the right-hand
side of each equation represents mutual linear interaction
between the two systems, where each system is coupled
to the other system via an m × m matrix of spatial linear
filters Â(r,r ′) : Rd × Rd → Rm×m. The parameter ε � 0 is
the interaction intensity, which is assumed to be small.

As a benchmark, we also consider the following systems
with simple, direct mutual interaction:

∂

∂t
X1(r,t) = F(X1,r) + D̂∇2 X1(r,t) + εX2(r,t),

(2)
∂

∂t
X2(r,t) = F(X2,r) + D̂∇2 X2(r,t) + εX1(r,t),

where every point in the system is directly coupled to the
corresponding point of the other system without filtering. The
definitions of the variables and parameters are the same as
in Eq. (1). Both interaction schemes, Eqs. (1) and (2), can
exhibit in-phase synchronization between the systems, and we
compare the stability of the synchronized states between them.

As another typical interaction scheme, we may also con-
sider diffusive interaction between the two reaction-diffusion
systems given by

∂

∂t
X1(r,t) = F(X1,r) + D̂∇2 X1(r,t)

+ ε

∫
V

d r ′Â(r,r ′)[X2(r ′,t) − X1(r ′,t)],

∂

∂t
X2(r,t) = F(X2,r) + D̂∇2 X2(r,t)

+ ε

∫
V

d r ′Â(r,r ′)[X1(r ′,t) − X2(r ′,t)]. (3)

It is clear that this interaction scheme also allows in-phase
synchronization. For sufficiently small ε, which is assumed
throughout this study, we can show that the stability of the
in-phase synchronized state with this diffusive interaction
scheme is approximately equal [up to O(ε)] to that for the
interaction scheme given by Eq. (1). Similarly, in our previous
paper [10], we analyzed the following simple case with direct
diffusive interaction, where every point in the system is
diffusively coupled to the corresponding point in the other
system as

∂

∂t
X1(r,t) = F(X1,r) + D̂∇2 X1(r,t)

+ ε[X2(r,t) − X1(r,t)],

∂

∂t
X2(r,t) = F(X2,r) + D̂∇2 X2(r,t)

+ ε[X1(r,t) − X2(r,t)], (4)

and we showed that the two systems undergo mutual synchro-
nization by using the phase reduction theory. Linear stability
of the in-phase synchronized state with this interaction scheme
is also approximately the same as that for Eq. (2) when ε is
sufficiently small.

In this study, we focus on the interaction schemes given
by Eqs. (1) and (2), and we analyze their synchronization
properties. We consider a general nonlocal interaction given
by Eq. (1), and we try to optimize the linear filter Â(r,r ′) so that
the two systems exhibit more stable in-phase synchronization
than the case with the simple interaction given by Eq. (2). In
the following, we refer to the interaction scheme in Eq. (1) as
nonlocal, while that in Eq. (2) is direct.
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B. Phase reduction

In Ref. [10], we generalized the phase reduction theory
for finite-dimensional limit-cycle oscillators [2] to reaction-
diffusion systems exhibiting stable rhythmic patterns. Using
the theory, we can systematically approximate the dynamics
of two weakly coupled reaction-diffusion systems by simple
two-dimensional coupled phase equations, and we can analyze
their synchronization properties.

Suppose that a single reaction-diffusion system (without
interaction) exhibits a stable rhythmic pattern, that is, a stable
limit-cycle solution X0(r,t + T ) = X0(r,t) of period T and
frequency ω = 2π/T . We can introduce a phase variable θ ∈
[0,2π ] of the rhythmic pattern around the limit-cycle solution
in the state space of the system that always increases with
a constant frequency ω in the absence of perturbation (i.e.,
the asymptotic phase [1,2,5,6,16–18]), and we represent the
limit-cycle solution as a function of phase θ , rather than time
t , as X0(r,θ ) (0 � θ � 2π ).

In the phase reduction theory, the phase sensitivity function
Z(r,θ ) : Rd × [0,2π ] → Rm plays an important role, i.e., it
characterizes the linear phase response of the system to a
weak perturbation that is applied when the system state is at
X0(r,θ ). It is given by a 2π -periodic solution (an eigenfunction
associated with the zero eigenvalue) to the adjoint equation

∂

∂θ
Z(r,θ ) = −DF(X0(r,θ ),r)†Z(r,θ ) − D̂†∇2 Z(r,θ ) (5)

with appropriate boundary conditions, where DF is the Jacobi
matrix of F(X,r) at X = X0(r,θ ) and † denotes matrix
transpose, and it satisfies a normalization condition∫

V

d r Z(r,θ ) · U(r,θ ) = 1 (6)

for 0 � θ � 2π . Here, we defined the tangent field U(r,θ )
of X0(r,θ ) along the limit-cycle solution as U(r,θ ) =
∂ X0(r,θ )/∂θ .

We consider weakly coupled reaction-diffusion systems
given by Eq. (1) or Eq. (2), and we assume that the rhythmic
patterns are only slightly perturbed and persist even when weak
mutual interaction between the two systems is introduced.
We can then approximately describe the system states using
only scalar phase variables θ1,2 ∈ [0,2π ] as X1,2(r,t) =
X0(r,θ1,2(t)), and we derive approximate phase equations for
θ1,2(t) from Eq. (1) or Eq. (2) as

θ̇1(t) = ω + ε�(θ1 − θ2),
(7)

θ̇2(t) = ω + ε�(θ2 − θ1),

where the overdot represents d/dt , and the 2π -periodic
function �(φ) : [0,2π ] → R is called the phase-coupling
function. In the case of the nonlocal interaction, Eq. (1), the
phase-coupling function is given by

�(φ) = 1

2π

∫ 2π

0
dψ

∫
V

d r

×
∫

V

d r ′ Z(r,ψ + φ) · Â(r,r ′)X0(r ′,ψ), (8)

and in the case of the direct interaction, Eq. (2), the phase-
coupling function is simply given by

�(φ) = 1

2π

∫ 2π

0
dψ

∫
V

d r Z(r,ψ + φ) · X0(r,ψ). (9)

Synchronization between the two systems can be analyzed
in the same way as for finite-dimensional coupled oscillators
[2]. From Eq. (7), we can derive the dynamics of the phase
difference φ = θ1 − θ2, which we restrict in the range [−π,π ],
as

φ̇(t) = ε�a(φ), (10)

where

�a(φ) = �(φ) − �(−φ) (11)

is the antisymmetric part of the phase-coupling function
�(φ). Fixed points of this equation satisfying �a(φ∗) = 0
correspond to the phase differences where the two systems
exhibit synchronization. The stability of a fixed point φ = φ∗
is characterized by the slope of �a(φ∗).

Because the function �a(φ) vanishes at φ = 0 and φ = ±π

by definition, Eq. (10) has fixed points at φ∗ = 0 and φ∗ = ±π .
We focus on the in-phase synchronized state, φ∗ = 0, whose
stability is characterized by

�′
a(0) = d

dφ
�a(φ)

∣∣∣∣
φ=0

. (12)

In the case of the nonlocal interaction, Eq. (1), this value
depends on Â(r,r ′). For the direct interaction, Eq. (2), this
value can be explicitly calculated as

�′
a(0) = 2�′(0)

= 2 · 1

2π

∫ 2π

0
dψ

∫
V

d r
∂ Z(r,ψ)

∂ψ
· X0(r,ψ)

= −2 · 1

2π

∫ 2π

0
dψ

∫
V

d r Z(r,ψ) · U(r,ψ)

= −2, (13)

where we performed partial integration, used the 2π -
periodicity of Z and X0 to eliminate the surface terms, and
we used the normalization condition Eq. (6) for Z. In this
study, we try to make �′

a(0) as negative as possible in order to
improve the stability of the in-phase synchronization under a
constraint for the norm of Â(r,r ′).

C. Optimal linear filter for stable synchronization

Under the framework of the phase reduction approximation
for sufficiently small ε, we seek the optimal filter function
Â(r,r ′) that maximizes the linear stability −�′

a(0) of the in-
phase synchronized state. As a constraint, we fix the spatial
average of the Frobenius norm (or the Hilbert-Schmidt norm)
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of the linear filter A(r,r ′), i.e.,∫
V

d r
∫

V

d r ′ ‖Â(r,r ′)‖2
F = P, (14)

where P > 0 is a constant and

‖Â(r,r ′)‖2
F =

m∑
i=1

m∑
j=1

Aij (r,r ′)2. (15)

Toward that end, we consider the action

S{Â,λ} = −�′
a(0)

− λ

⎛
⎝∫

V

d r
∫

V

d r ′
m∑

i=1

m∑
j=1

Aij (r,r ′)2 − P

⎞
⎠,

(16)

where λ is the Lagrange multiplier, and we find Â and λ, which
give the extremum of S.

From Eq. (8), the slope �′(φ) = d�(φ)/dφ of the phase-
coupling function is given by

�′(φ) = 1

2π

∫ 2π

0
dψ

∫
V

d r

×
∫

V

d r ′ ∂ Z(r,ψ + φ)

∂ψ
· Â(r,r ′)X0(r ′,ψ). (17)

Thus, the slope �′
a(0) of the antisymmetric part �a(φ) =

�(φ) − �(−φ) at φ = 0 is calculated as

�′
a(0) = 2�′(0) = 2 · 1

2π

∫ 2π

0
dψ

∫
V

d r

×
∫

V

d r ′ ∂ Z(r,ψ)

∂ψ
· Â(r,r ′)X0(r ′,ψ)

= −2 · 1

2π

∫ 2π

0
dψ

∫
V

d r

×
∫

V

d r ′ Z(r,ψ) · Â(r,r ′)U(r ′,ψ). (18)

Denoting the vector components of Z, X0, and U = ∂ X0/∂ψ

as Z1, . . . ,Zm, X1, . . . ,Xm, and U1, . . . ,Um, respectively, and
the matrix components of Â as {Aij } (i,j = 1,2, . . . ,m), �′

a(0)
can be expressed as

�′
a(0) = −2 · 1

2π

∫ 2π

0
dψ

∫
V

d r

×
∫

V

d r ′
m∑

i=1

m∑
j=1

Zi(r,ψ)Aij (r,r ′)Uj (r ′,ψ)

= −2
∫

V

d r
∫

V

d r ′
m∑

i=1

m∑
j=1

Aij (r,r ′)Wij (r,r ′). (19)

Here, we have defined a correlation matrix Ŵ (r,r ′) whose
components are given by

Wij (r,r ′) = 1

2π

∫ 2π

0
dψ Zi(r,ψ)Uj (r ′,ψ), (20)

which characterizes the spatial correlation between Z and U
averaged over one period of oscillation.

The action is now given by

S{Â,λ} = 2
∫

V

d r
∫

V

d r ′
m∑

i=1

m∑
j=1

Aij (r,r ′)Wij (r,r ′)

− λ

⎛
⎝∫

V

d r
∫

V

d r ′
m∑

i=1

m∑
j=1

Aij (r,r ′)2 − P

⎞
⎠, (21)

and by taking variations with respect to Aij (r,r ′), we obtain

Wij (r,r ′) = λAij (r,r ′), (22)

so the optimal linear filter is given by

Â(r,r ′) = 1

λ
Ŵ (r,r ′). (23)

Differentiating S with respect to λ simply gives the constraint∫
V

d r
∫

V

d r ′
m∑

i=1

m∑
j=1

Aij (r,r ′)2 = P. (24)

This equation gives the Lagrange multiplier λ as

λ =
√√√√ 1

P

∫
V

d r
∫

V

d r ′
m∑

i=1

m∑
j=1

Wij (r,r ′)2, (25)

where we have chosen the plus sign so that S takes the
extremum [or �′(0) becomes negative] at the optimal Â. The
largest negative slope of �′

a(0) is given by

�′
a(0) = −2

λ

∫
V

d r
∫

V

d r ′
m∑

i=1

m∑
j=1

Wij (r,r ′)2. (26)

This value gives the largest stability of the in-phase synchro-
nized state for the nonlocal interaction.

Note that spatial linear filtering of the field X by Â in
Eq. (1) is a fundamental method of image processing and can
be easily performed. It is also notable that the expression for the
correlation matrix, Eq. (20), consists of only two terms, U and
Z. These are the most fundamental quantities of limit-cycling
systems, that is, U is a tangent field to the limit-cycle orbit
and Z is a phase sensitivity function of a limit-cycle orbit,
which are adjoint to each other. These quantities always arise
in the phase reduction analysis of coupled oscillators, and the
expression of Eq. (20) is physically natural.

D. Optimal nonlinear interaction

Theoretically, we can consider a more general case in which
the two systems are coupled via a nonlinear functional as

∂

∂t
X1(r,t) = F(X1,r) + D̂∇2 X1(r,t) + ε H{X2(·,t),r},

∂

∂t
X2(r,t) = F(X2,r) + D̂∇2 X2(r,t) + ε H{X1(·,t),r},

(27)

where H : C × Rd → Rm (C represents the set of spatial
patterns) is a functional of the spatial pattern. The phase-
coupling function �(φ) : [0,2π ] → R in this case can be
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calculated as

�(φ) = 1

2π

∫ 2π

0
dψ

∫
V

d r Z(r,φ + ψ) · H(r,ψ), (28)

where H(r,ψ) = H{X0(·,ψ),r}. Note that we have replaced
the functional H{X0(·,ψ),r} of X0(r,ψ) by the function
H(r,ψ) of ψ here, because the function X0(r,ψ) is solely
determined by phase ψ in the framework of the phase
reduction. We refer to H(r,ψ) as the interaction function.

We try to make �′
a(0) as negative as possible under the

constraint

1

2π

∫ 2π

0
dψ

∫
V

d r ‖H(r,ψ)‖2 = Q, (29)

that is, we fix the squared mean of H over the space and all
possible combinations of the phase variables at some constant
Q > 0. This amounts to fixing the average “energy” of the
mutual interaction between the two systems. We consider the
following action functional of H and a Lagrange multiplier λ:

S{H,λ} = −�′
a(0)

− λ

(
1

2π

∫ 2π

0
dψ

∫
V

d r ‖H(r,ψ)‖2 − Q

)
, (30)

where �′
a(0) in the first term can be represented as

�′
a(0) = 2�′(0) = 2 · 1

2π

∫ 2π

0
dψ

×
∫

V

d r
(

∂

∂ψ
Z(r,ψ)

)
· H(r,ψ). (31)

By taking variations of S{H,λ} with respect to H , we obtain
a Euler-Lagrange equation

− ∂

∂ψ
Z(r,ψ) − λH(r,ψ) = 0, (32)

which yields

H(r,ψ) = −1

λ

∂

∂ψ
Z(r,ψ). (33)

The Lagrange multiplier λ is given by

λ =
√

1

Q

1

2π

∫ 2π

0
dψ

∫
V

d r

∥∥∥∥ ∂

∂ψ
Z(r,ψ)

∥∥∥∥
2

. (34)

Note that the plus sign, which gives the extremum of S{H,λ},
has been chosen here. The largest negative slope of the
antisymmetric part of the phase-coupling function at φ = 0
is given by

�′
a(0) = −2

λ

1

2π

∫ 2π

0
dψ

∫
V

d r

∥∥∥∥ ∂

∂ψ
Z(r,ψ)

∥∥∥∥
2

, (35)

which yields the largest possible stability of the in-phase
synchronized state for the general nonlinear interaction of
Eq. (27).

Thus, H(r,ψ) ∝ −∂ Z(r,ψ)/∂ψ is the optimal interaction
function in the nonlinear case. That is, the optimal nonlinear
interaction between the two systems is realized by (i) measur-
ing the phase ψ of the other system, and (ii) driving the system
using the negative derivative of the phase sensitivity function

with respect to phase ψ . This result is consistent with that of
Zlotnik et al. [37] for the optimal periodic input signal that
maximizes the linear stability of the entrainment of ordinary
limit-cycle oscillators.

In practice, however, online continuous-time estimation of
the instantaneous phase value ψ from an observed rhythmic
pattern is generally not straightforward (note that we need to
estimate the correct asymptotic phase of a given pattern). For
low-dimensional oscillators, we could construct a mapping
from the oscillator states to phase values beforehand and use
it to estimate the instantaneous phase value of the observed
oscillator state in real time. However, construction of such
a mapping from high-dimensional data of spatial patterns to
phase values is generally a nontrivial, demanding task. Thus,
the optimal nonlinear interaction may not be easy to realize ex-
perimentally, in contrast to the nonlocal interaction, which can
easily be implemented once the optimal linear filter Â is given.

III. NUMERICAL SIMULATIONS

A. FitzHugh-Nagumo model

We now illustrate the theoretical results with numerical
examples. As the reaction-diffusion system, we use the
FitzHugh-Nagumo (FHN) system described by two field
variables, X = (Xu,Xv) = (u,v), which obey

∂

∂t
u(r,t) = u(u − α)(1 − u) − v + Du∇2u,

(36)
∂

∂t
v(r,t) = τ−1(u − γ v) + Dv∇2v.

This system can exhibit various rhythmic spatiotemporal
patterns, such as traveling pulses, oscillating spots, target
waves, and rotating spirals. Here, as typical examples, we
consider a traveling pulse (on a ring) and an oscillating
spot in one-dimensional systems, and a rotating spiral in
two-dimensional systems. The setup of simulations is basically
the same as in Ref. [10], but some of the parameter values and
system sizes are modified.

We compare the results for the nonlocal interaction [Eq. (1)
with the optimal linear filter Â], the direct interaction [Eq. (2)],
and the optimal nonlinear interaction [Eq. (27) with the optimal
function H]. To make a fair comparison between the different
interaction schemes, we fix the squared mean of the interaction
term over the spatial domain and over the phase to a constant,
i.e., we calculate the quantity

I = 1

2π

∫ 2π

0
dψ

∫
V

d r ‖X0(r,ψ)‖2 (37)

for the direct interaction and appropriately normalize the
nonlocal interaction,

G(r,θ ) =
∫

V

d r ′ Â(r,r ′)X0(r ′,θ )

= 1

λ

∫
V

d r ′ Ŵ (r,r ′)X0(r ′,θ ), (38)

and the nonlinear interaction,

H(r,θ ) = −1

λ

∂

∂θ
Z(r,θ ), (39)
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FIG. 1. Traveling-pulse solution of the FHN model. Snapshots
of (a) X0(x,θ = 0) = (Xu,Xv), (b) U(x,θ = 0) = (Uu,Uv), and (c)
Z(x,θ = 0) = (Zu,Zv). Both u and v components are plotted in each
figure. Some of the curves are enlarged for visibility.

so that

1

2π

∫ 2π

0
dψ

∫
V

d r ‖G(r,ψ)‖2 = I (40)

and

1

2π

∫ 2π

0
dψ

∫
V

d r ‖H(r,ψ)‖2 = I (41)

are satisfied. That is, we fix the average “energy” of the
interaction functions between the two systems over one period
of oscillation.

For each pattern, the limit-cycle solution, phase sensitivity
function, and antisymmetric part of the phase-coupling func-
tions for the direct, optimal nonlocal, and optimal nonlinear
interactions are shown. Direct numerical simulations of the
synchronization process of the reaction-diffusion systems are
also shown for the direct and optimal nonlocal interactions (see
the Appendix for numerical computation of the optimal nonlo-
cal interaction). Optimal nonlinear interaction is not simulated
because it requires the instantaneous phase values of the spatial
patterns, thus it is not easy to realize. We use the synchroniza-

tion error, E =
√∫

V
d r ‖X1(r,t) − X2(r,t)‖2, and the phase

difference, φ = θ1 − θ2, measured from the simulated patterns
to see the convergence of the systems to synchronization. Here,
the phase difference is measured stroboscopically by using the
threshold-crossing times of the patterns roughly at intervals of
the period of oscillation.

B. Traveling pulse

Figures 1–4 show the results for a traveling pulse in a
one-dimensional space 0 � x � L with periodic boundary
conditions. The parameters are α = 0.1, τ−1 = 0.002, γ =
2.5, Du = 1.0, and Dv = 0.1. The system size is L = 200
and discretized by using N = 200 grid points. The interaction
intensity between the systems is ε = 0.0001.

0 50 100 150 200
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0.0

0.5

1.0

G
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v

Gu (× 30)
Gv

0 50 100 150 200
x

-2.0
-1.0
0.0
1.0
2.0

H
u, H

v

Hu (× 30)
Hv

(a)

(b)

FIG. 2. Optimized interaction functions for the traveling pulse.
(a) Optimal nonlocal interaction G(x,θ = 0) = (Gu,Gv) and (b)
optimal nonlinear interaction H(x,θ = 0) = (Hu,Hv). Both u and
v components are plotted. Results for the u components are enlarged
for clarity.

Figure 1 shows the traveling-pulse solution X0(x,θ ),
the tangent function U(x,θ ) = ∂ X0(x,θ )/∂θ , and the phase
sensitivity function Z(x,θ ). In each figure, both u and v com-
ponents of X0(x,θ = 0) = (Xu,Xv), U(x,θ = 0) = (Uu,Uv),
and Z(x,θ = 0) = (Zu,Zv) are plotted. Because the pulse
keeps a constant shape and simply travels to the right with
a constant velocity, all the functions simply translate to the
right with a constant velocity without changing their shapes.
The period of oscillation is T ≈ 395.7 and the frequency is
ω ≈ 0.015 88. From these data, the correlation matrix Ŵ (x,x ′)
is calculated.

Figure 2 shows the nonlocal interaction G(x,θ ) and the
nonlinear interaction H(x,θ ) at θ = 0. These optimal interac-
tion functions also translate to the right with the pulse without
changing their shapes. The nonlocal interaction function and

-3 -2 -1 0 1 2 3-20

-10

0

10

20

a(
)

direct
nonlocal
nonlinear

FIG. 3. Antisymmetric part �a(φ) of the phase-coupling func-
tions for the traveling pulse. Results for direct interaction, optimal
nonlocal interaction, and optimal nonlinear interaction are shown.
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FIG. 4. Synchronization dynamics between traveling pulses. Re-
sults for direct interaction and for optimal nonlocal interaction are
compared. (a) Evolution of synchronization error. (b) Evolution of
phase difference.

the nonlinear interaction function are different from each other.
However, they have one thing in common: both interaction
functions change their signs in front of the pulse. This is
actually essential for efficient control of the phase of the
pulse.

Figure 3 shows the antisymmetric part �a(φ) of the phase-
coupling function for the direct, nonlocal optimal, and optimal
nonlinear interaction. Both nonlocal interaction and nonlinear
interaction yield much higher stability of the synchronized
state than the direct interaction. The nonlinear interaction gives
the highest linear stability, but the nonlocal interaction also
yields reasonably high stability. We can also observe that both
the nonlocal interaction and the nonlinear interaction uniquely
give the in-phase synchronized state as the globally stable
solution, while the direct interaction yields both in-phase and
anti-phase-synchronized solutions as stable solutions. Because
global stability of the solutions is not considered in the present
optimization, these results are coincidental.

Figure 4 shows the synchronization dynamics between the
two reaction-diffusion systems obtained by direct numerical
simulations for the direct and optimal nonlocal interactions.
The temporal evolution of the synchronization error and the
phase difference (measured stroboscopically at each period of
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x

-0.15
-0.10
-0.05
0.00

Z u, Z
v Zu
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(a)

(b)

(c)

FIG. 5. Oscillating-spot solution of the FHN model. Snapshots
of (a) X0(x,θ = 0) = (Xu,Xv), (b) U(x,θ = 0) = (Uu,Uv), and (c)
Z(x,θ = 0) = (Zu,Zv). Both u and v components are shown.

oscillation) are shown. We can clearly see that the optimal
nonlocal interaction yields much faster synchronization than
the direct coupling. When the phase difference is sufficiently
small, the exponential growth (or decay) rate of the phase
difference coincides with the slope �′

a(0).

C. Oscillating spot

Figures 5–10 show the results for the oscillating-spot solu-
tion in a one-dimensional space [0,L] with no-flux boundary
conditions. In this case, the parameter α(x) that controls the
excitability of the media is spatially modulated as α(x) =
α0 + (α1 − α0)(2x/L − 1)2 with α0 = −1.1 and α1 = −1.6,
so that the oscillating spot stays at the center of the system.
The other parameters are τ−1 = 0.028, γ = 2.0, Du = 1.0,

FIG. 6. Evolution of the limit-cycle solution X0(x,θ ) = (Xu,Xv)
and the phase sensitivity function Z(x,θ ) = (Zu,Zv) for one period
of oscillation, 0 � θ � 2π . (a) Xu, (b) Xv , (c) Zu, and (d) Zv .
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FIG. 7. Correlation matrix Ŵ (x,x ′) = (Wuu Wuv

Wvu Wvv
). (a) Wuu, (b)

Wuv , (c) Wvu, and (d) Wvv .

and Dv = 2.5. The length of the system is L = 80, and it is
discretized by using N = 240 grid points. The intensity of
mutual interaction between the systems is ε = 0.000 01.

Figure 5 shows the oscillating-spot solution X0(x,θ ),
the tangent function U(x,θ ) = ∂ X0(x,θ )/∂θ , and the phase
sensitivity function Z(x,θ ), all at θ = 0. In each figure, both u

and v components of X0(x,θ = 0) = (Xu,Xv), U(x,θ = 0) =
(Uu,Uv), and Z(x,θ = 0) = (Zu,Zv) are plotted. The period
of oscillation is T ≈ 200.6 and the frequency is ω ≈ 0.0313.
Figure 6 shows the evolution of X0(x,θ ) and Z(x,θ ) in color
code for one period of oscillation, 0 � θ � 2π . The phase
sensitivity function is strongly localized near the interfaces of
the spot.

FIG. 8. Optimized interaction functions of the oscillating spot.
(a,b) Optimal nonlocal interaction G(x,θ ) = (Gu,Gv). (a) Gu and
(b) Gv . (c,d) Optimal nonlinear interaction H(x,θ ) = (Hu,Hv). (c)
Hu and (d) Hv . Evolution for one period of oscillation are shown
(0 � θ � 2π ). In each figure, the lines indicate the locations where
the interaction function vanishes and changes the sign.
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FIG. 9. Antisymmetric part �a(φ) of the phase-coupling func-
tions for the oscillating spot. Results for direct interaction, optimal
nonlocal interaction, and optimal nonlinear interaction are shown.

Figure 7 shows all four components of the correlation
matrix Ŵ (x,x ′), and Fig. 8 shows the optimal nonlocal
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FIG. 10. Synchronization dynamics between oscillating spots.
Results for direct interaction and for optimal nonlocal interaction
are compared. (a) Evolution of synchronization error. (b) Evolution
of phase difference.

012224-8



OPTIMIZING MUTUAL SYNCHRONIZATION OF RHYTHMIC . . . PHYSICAL REVIEW E 96, 012224 (2017)

FIG. 11. Spiral solution of the FHN model. (a,b) Snapshots of the
limit-cycle solution X0(x,y,θ = 0) = (Xu,Xv). (a) Xu and (b) Xv .
(c,d) Snapshots of the phase sensitivity functions Z(x,y,θ = 0) =
(Zu,Zv). (c) Zu and (d) Zv . All patterns constantly rotate around the
center of the system in the direction shown by the arrow.

interaction G(x,θ ) and the optimal nonlinear interaction
H(x,θ ) for one period of oscillation (0 � θ � 2π ). The results
for the nonlocal and nonlinear cases are different, but the
locations at which the interaction functions change their signs
are roughly similar in both cases and reflect the locations where
the phase sensitivity functions take large values.

Figure 9 shows the antisymmetric part �a(φ) of the
phase-coupling function for the direct, optimal nonlocal, and
optimal nonlinear interaction. Both the nonlocal interaction

and the nonlinear interaction yield much higher stability
than the direct interaction. In this case, the optimal nonlocal
interaction yields somewhat lower stability than the optimal
nonlinear case. This discrepancy arises because, in addition
to the inevitable smoothness of the interaction function due
to filtering in the nonlocal case, the spatial linear filter Â

cannot shift the temporal phase of the interaction function
G from the phase of the oscillation of the spot, while the
phase of the optimal nonlinear interaction H is slightly shifted
from that of the spot. In this example, while in-phase and
anti-phase-synchronized solutions are both stable for the direct
interaction, both nonlocal interaction and nonlinear interaction
give the global stability of the in-phase synchronized solution
as in the previous case of traveling pulses. Figure 10 shows the
evolution of the synchronization error and the phase difference
between the systems for the direct and optimal nonlocal
interactions. The optimal nonlocal interaction yields much
faster convergence to the synchronized state.

D. Rotating spiral

This example is motivated by the experimental study by
Hildebrand et al. [12]. Figures 11–14 show the results for the
spiral in a two-dimensional square 0 � x,y � L with no-flux
boundary conditions. The parameter α(x) that controls the ex-
citability of the media is spatially modulated as α(x,y) = α0 +
(α1 − α0) exp(−r4/r4

0 ), r =
√

(x − L/2)2 + (y − L/2)2 with
α0 = 0.05 and α1 = 0.5, so that the spiral stays at the center of
the system. The other parameters are τ−1 = 0.005, γ = 2.5,
Du = 1.0, and Dv = 0.0. The size of the system is L × L =
80 × 80, and it is discretized by using N2 = 802 grid points.
The interaction intensity between the systems is ε = 0.000 01.

FIG. 12. Phase sensitivity function and optimized interaction functions near the spiral tip. (a,b) Snapshots of the phase sensitivity function
Z(x,y,θ = 0) = (Zu,Zv). (a) Zu and (b) Zv . (c,d) Snapshots of the optimal nonlocal interaction G(x,y,θ = 0) = (Gu,Gv). (c) Gu and (d) Gv .
(e,f) Snapshots of the optimal nonlinear interaction H(x,y,θ = 0) = (Hu,Hv). (e) Hu and (f) Hv .
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FIG. 13. Antisymmetric part �a(φ) of the phase-coupling func-
tions for the spiral. Results for direct interaction, optimal nonlocal
interaction, and optimal nonlinear interaction are shown.

Figure 11 shows the spiral solution X0(x,y,θ ) and the
phase sensitivity function Z(x,y,θ ) at θ = 0. The spiral pattern
X0(x,y,θ ) keeps a constant shape and rotates around the center
with a constant frequency, and, accordingly, U(x,y,θ ) (not
shown) and Z(x,y,θ ) also rotate around the center. The period
of oscillation is T ≈ 179 and the frequency is ω ≈ 0.0351.
It can be seen that the phase sensitivity function Z(x,y,θ ) is
strongly localized near the spiral tip.

Figure 12 shows the phase sensitivity function Z(x,y,θ ),
the optimal nonlocal interaction function G(x,y,θ ), and the
optimal nonlinear interaction function H(x,y,θ ), enlarged
near the spiral tip at θ = 0. The patterns of G and H are
different, but they are similar in that both of them are localized
near the spiral tip and exhibit localized positive and negative
spots.

Figure 13 shows the antisymmetric part �a(φ) of the
phase-coupling function for the direct, optimal nonlocal, and
optimal nonlinear interaction. Both the nonlocal interaction
and the nonlinear interaction give drastically higher stability
than the direct interaction. The optimal nonlinear interaction
yields the highest stability, but the optimal nonlocal interaction
also yields reasonably high stability. In this example, again,
the nonlocal interaction and the optimal nonlinear interaction
give the global stability of the in-phase synchronized solution,
while the direct interaction provides bistability of in-phase and
anti-phase-synchronized solutions.

Finally, Fig. 14 shows the evolution of the synchronization
error and the phase difference between the systems for the
direct and optimal nonlocal interactions. The optimal nonlocal
interaction yields much faster convergence to the synchronized
state.

E. On global stability of the in-phase synchronized state

In all the considered examples, the optimized interactions
yield the in-phase synchronized state as a globally stable fixed
point, even if the direct interaction gives bistability of the
in-phase and antiphase states (see Figs. 3, 9, and 13) [44].
Since the global stability of the in-phase synchronized state is
not imposed in the present optimization problem, these results
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FIG. 14. Synchronization dynamics between spirals. Results for
direct interaction and for optimal nonlocal interaction are compared.
(a) Evolution of synchronization error. (b) Evolution of phase
difference.

are coincidental, as stated before. In the present examples,
low-order Fourier components are dominant in the waveforms
of the oscillation and phase sensitivity function, and thus the
phase-coupling function �(φ) is also a long-wave smooth
function of the phase φ. By maximizing −�′

a(0), the first pair
of positive and negative lobes of �a(φ) on both sides of the
φ = 0 axis is further enhanced, resulting in the global stability
of the in-phase synchronized state. In the case of the nonlocal
interaction, linear filtering of the field variable also contributes
to the smoothness of the phase-coupling function. In contrast,
in the case of the nonlinear interaction, there is no such
smoothing effect from the filtering, and the phase-coupling
function is less smooth than the nonlocal case, as we can
observe in Figs. 3 and 13.

IV. SUMMARY

We developed a method for optimizing the interaction
function between a pair of mutually interacting reaction-
diffusion systems exhibiting stable rhythmic patterns. We
first considered the case with nonlocal interaction, and we
derived the optimal filtering functions for two types of
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constraints. We then showed that the optimal nonlinear
interaction function is given by the negative of the derivative
of the phase sensitivity function in the general case. Using the
FitzHugh-Nagumo reaction-diffusion system, we illustrated
that the synchronization between the two systems becomes
much faster than it is when all field variables are directly
interacting with identical intensity. These results could be
tested experimentally, e.g., by using a pair of spiral patterns in
the spatially extended photosensitive Belousov-Zhabotinsky
reaction [12,28–30].
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APPENDIX

Each component of the optimal nonlocal interaction

G(r,t) = 1

λ

∫
V

d r ′Ŵ (r,r ′)X(r ′,t) (A1)

can be expressed as

Gi(r,t) = 1

λ

∫
V

d r ′
m∑

j=1

Wij (r,r ′)Xj (r ′,t)

= 1

2πλ

∫ 2π

0
dψ

×
∫

V

d r ′
m∑

j=1

Zi(r,ψ)Uj (r ′,ψ)Xj (r ′,t)

= 1

2πλ

∫ 2π

0
dψ Zi(r,ψ)X̄(ψ,t), (A2)

where

X̄(ψ,t) =
∫

V

d r ′
m∑

j=1

Uj (r ′,ψ)Xj (r ′,t). (A3)

That is, the optimal nonlocal interaction can also be repre-
sented as

G(r,t) = 1

2πλ

∫ 2π

0
dψ Z(r,ψ)X̄(ψ,t), (A4)

and we use this expression in the numerical simulations. When
we discretize a d-dimensional spatial domain by using Nd

grid points and one period of oscillation by using M points,
the computational costs of Eqs. (A1) and (A4) are O(N2d )
and O(MNd ), respectively. Therefore, Eq. (A4) is much more
efficient than Eq. (A1) when the spatial dimension d of the
system is large.

[1] A. T. Winfree, The Geometry of Biological Time (Springer, New
York, 1980); ibid., 2nd ed. (Springer, New York, 2001).

[2] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence
(Springer, New York, 1984).

[3] L. Glass and M. C. Mackey, From Clocks to Chaos: The Rhythms
of Life (Princeton University Press, Princeton, NJ, 1988).

[4] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A
Universal Concept in Nonlinear Sciences (Cambridge Univer-
sity Press, Cambridge, 2001).

[5] F. C. Hoppensteadt and E. M. Izhikevich, Weakly Connected
Neural Networks (Springer, New York, 1997).

[6] G. B. Ermentrout and D. H. Terman, Mathematical Foundations
of Neuroscience (Springer, New York, 2010).

[7] F. Dörfler and F. Bullo, Synchronization and transient stability
in power networks and nonuniform Kuramoto oscillators, SIAM
J. Control Optim. 50, 1616 (2012).

[8] K. Kotani, I. Yamaguchi, Y. Ogawa, Y. Jimbo, H. Nakao, and
G. B. Ermentrout, Adjoint Method Provides Phase Response
Functions for Delay-Induced Oscillations, Phys. Rev. Lett. 109,
044101 (2012).
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