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Hybrid dynamical systems characterized by discrete switching of smooth dynamics have been used to model
various rhythmic phenomena. However, the phase reduction theory, a fundamental framework for analyzing the
synchronization of limit-cycle oscillations in rhythmic systems, has mostly been restricted to smooth dynamical
systems. Here we develop a general phase reduction theory for weakly perturbed limit cycles in hybrid dynamical
systems that facilitates analysis, control, and optimization of nonlinear oscillators whose smooth models are
unavailable or intractable. On the basis of the generalized theory, we analyze injection locking of hybrid limit-cycle
oscillators by periodic forcing and reveal their characteristic synchronization properties, such as ultrafast and
robust entrainment to the periodic forcing and logarithmic scaling at the synchronization transition. We also
illustrate the theory by analyzing the synchronization dynamics of a simple physical model of biped locomotion.
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I. INTRODUCTION

Hybrid dynamical systems have been used to describe
physical processes that exhibit sudden qualitative changes or
abrupt jumps during otherwise continuous evolution. Some
examples are the collision of particles, refraction and reflection
of waves, spiking of neurons, switching of gene expression,
limb-substrate impacts in legged robots and animals, human-
structure interaction, switching of elements in electric circuits,
and breakdown of nodes or links in networked systems [1–7].
Because such discontinuous events are found in many areas
of science and engineering [8,9], it is important to develop
theoretical frameworks to analyze hybrid dynamical systems.

Many hybrid dynamical systems exhibit stable rhythmic
activities, for example, periodic spiking of neurons, rhythmic
locomotion of robots, oscillations in power electric circuits,
and business cycles in economic models [10–13], which are
typically modeled as nonlinear limit-cycle oscillations. Syn-
chronization of such rhythmic activities may play important
functional roles in biological and engineered systems, e.g.,
in locomotor rhythms, vibro-impact energy harvesters, and
wireless sensor networks [14–16].

One of the fundamental mathematical frameworks for
analyzing limit-cycle oscillations is the phase reduction
theory [17–19], which gives approximate reduced description
of the dynamics of a weakly perturbed limit-cycle oscillator
using a simple one-dimensional phase equation. The phase
reduction theory is well established for stable limit-cycle
oscillations of smooth dynamical systems and has successfully
been applied to the analysis of rhythmic spatiotemporal
dynamics in chemical and biological systems [17,18]. Methods
for optimizing and controlling synchronization of limit-cycle
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oscillators have also been developed on the basis of the phase
reduction theory [20].

In phase reduction theory for smooth dynamical systems,
a weakly perturbed limit-cycle oscillator described by Ẋ(t) =
F(X(t)) + ε p(X(t),t) is considered, where X(t) ∈ RN is
the oscillator state, F(X) : RN → RN is a continuously
differentiable vector field representing the dynamics of the
oscillator, p(X,t) : RN × R → RN denotes external pertur-
bation applied to the oscillator, and ε ∈ R is a small parameter
representing the intensity of the perturbation. A system without
perturbation (ε = 0) is assumed to possess a stable limit-
cycle solution χ : X0(t) = X0(t + T ) of period T ∈ R, and
a phase θ of the oscillator state is introduced, which increases
with a constant frequency and takes the same value on the
isochron [17,21,22], i.e., a codimension-one manifold of the
oscillator states that share the same asymptotic behavior.

When the perturbation is sufficiently small, phase reduction
theory enables us to systematically approximate the original
multidimensional system using a simple one-dimensional
reduced phase equation of the form θ̇ (t) = 1 + εZ(θ ) · p(θ,t),
where θ (t) = �(X(t)) is the oscillator phase and �(X) :
RN → [0,T ) gives the phase of the oscillator state X . The
range [0,T ) of the phase is identified with a one-dimensional
torus T1. The function Z(θ ) : T1 → Rn, which is the gradient
of the isochron and is called the phase sensitivity function in
this study, quantifies the linear response of the oscillator phase
to perturbations given at phase θ on χ . It is known that Z(θ )
can be obtained as a T -periodic solution to the adjoint linear
problem of the system, Ż(t) = −(DF(X0(t)))† · Z(t) with
a normalization condition Z(0) · F(X0(0)) = 1, where DF
denotes the Jacobi matrix of F and † its transpose [19,23,24].

Recently, the phase reduction theory has been ex-
tended to nonconventional cases such as stochastic [25],
delay-induced [26], collective [27], spatially extended [28],
and strongly modulated [29] oscillations. Similar reduction
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methods that rely on sets of initial conditions characterized
by the same long-term behavior have also been developed
for heteroclinic orbits [30], limit tori [31], and stable fixed
points [32]. However, application of the phase reduction theory
to oscillatory hybrid dynamical systems has so far been limited
to low-dimensional systems or to a specific class of systems
whose phase sensitivity function is obtained from adiabatic
approximation [10,33,34]. To the best of our knowledge, no
systematic phase reduction theory for oscillators of high-
dimensional (N � 3) systems with discontinuity in χ has been
developed. This is mainly because the nonsmoothness of the
vector fields at the jumps prevents straightforward utilization
of the adjoint equation.

In this study, we develop a systematic phase reduction
theory for a general class of autonomous limit-cycle oscillators
in hybrid dynamical systems. This paper is organized as
follows: in Sec. II, limit-cycle oscillations in hybrid dynamical
systems are introduced. In Sec. III, the phase reduction
theory for hybrid limit cycles is developed. In Sec. IV, the
theory is illustrated by analyzing synchronization dynamics
of two examples of hybrid limit-cycle oscillators, that is,
an analytically tractable Stuart-Landau-type oscillator and a
physical model of biped locomotion. Section V summarizes
the results, and Appendices A–I provide mathematical details
of the main results presented in Secs. II–IV.

II. HYBRID LIMIT CYCLES

The state of a hybrid dynamical system that we consider in
this study is represented by a pair s = (I,X) of the discrete
state I ∈ {1,2, . . . ,m} = M for some m ∈ N (m = +∞ is
allowed) and the continuous state X ∈ RN . We denote the set
of pairs (i,j ) as G ⊂ M × M, which is a collection of all
possible transitions from discrete state i to j . As in Ref. [35],
we describe a hybrid dynamical system by the following hybrid
automaton:

Ẋ(t) = F(I (t),X(t)), if I (t) = i and

X(t) /∈ �ij for any j, (1)

X(t + 0) = �((i,j ),X(t)),

I (t + 0) = j, if I (t) = i and X(t) ∈ �ij for some j,

(2)

�ij =
{{X | L((i,j ),X) = 0}, if (i,j ) ∈ G.

empty set, otherwise. (3)

Here Eq. (1) describes the smooth dynamics of the continuous
state X(t) when the discrete state is I (t) = i, Eq. (2) the
jump of X(t) when the discrete state switches from i to j ,
and Eq. (3) represents a plane in the space of continuous
state on which the switching from i to j takes place. In
Eq. (1), F(I,X) : M × RN → RN is the vector field of the
system. In Eq. (2), “t + 0” indicates the moment just after
the switching of the discrete state at t , the transition function
�((i,j ),X) : G × RN → RN gives the new continuous state
after the switching of the discrete state from i to j , and �ij

is an (N − 1) dimensional zero-level surface of the function
L((i,j ),X) : G × RN → R on which the switching takes
place. It is assumed that the functions F(I,X), �((i,j ),X),

FIG. 1. Schematic representation of the dynamics of the hybrid
limit cycles.

and L((i,j ),X) are continuously differentiable with respect to
X ∈ RN and do not depend explicitly on time.

Suppose there exists a periodic solution χ : s0(t) =
(I0(t),X0(t)) of period T of Eqs. (1)–(3). As in Ref. [36],
we make several assumptions on the system (see Appendix A
for details) so the continuous part of the solution X0(t) is
piecewise continuously differentiable with respect to the initial
continuous state X0(0) on χ and linear stability analysis
of the solution can be performed. Let s∗ = (I (0),X(0)) be
an initial condition of Eqs. (1)–(3) and t = τk(s∗), k ∈ N
be the moments of switching of the discrete state, where
0 � τ1(s∗) < τ2(s∗) < · · · < τk(s∗) < · · · < +∞. For conve-
nience of notation, we also define τ0(s∗) = 0.

To simplify the expression of the periodic orbit χ , we here-
after use the following notation. By distinguishing the discrete
states visited more than once in one period, and by renumber-
ing the state indices, we introduce a set of discrete statesM0 =
{1,2, . . . ,m0} where m0 < +∞, such that the discrete state
I0(t) is switched in numerical order as 1 → 2 → · · · → m0 →
m0 + 1 = 1 at t = τ1(s∗),τ2(s∗), · · · ,τm0 (s∗) (see Fig. 1). Here
m0 is finite because the period T is finite and the assumption
(C2) in Appendix A assures that the system stays in each
discrete state for some nonzero duration. We also introduce the
following simplified notations for the discrete state transitions
on the periodic orbit χ :

Lk(X0(t)) = L((k,k + 1),X0(t)),

�k(X0(t)) = �((k,k + 1),X0(t)). (4)

We call the periodic solution χ a hybrid limit cycle if it is
linearly stable (see Appendix B for the linear stability analysis
of the periodic solution).

III. PHASE REDUCTION

The aim of phase reduction is to describe the dynamics
of the system state around the hybrid limit cycle χ by using
a scalar phase θ . We first introduce the phase function � :
M0 × RN → T1(=[0,T )) on χ , which gives the phase value
of the state s0 = (I0,X0) on χ as

�(s0(t + nT )) = �(I0(t + nT ),X0(t + nT )) = t (mod T ),

(5)
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where n ∈ Z�0 is an arbitrary positive integer. Namely, we
identify the time t (mod T ) as the oscillator phase θ , which
increases with a constant frequency 1 on χ , i.e.,

θ̇ (t) = �̇(I0(t),X0(t)) ≡ 1. (6)

In the following, we will denote a system state with phase θ

on χ also as s0(θ ) = (I0(θ ),X0(θ )) as a function of θ .
Phase θ can also be introduced in a neighborhood U

containing χ within its basin of attraction by introducing
an equivalence relation to initial conditions in U whose
asymptotic behaviors are the same. Namely, we introduce the
isochron of χ by assigning the same phase value to the set
of states in U that eventually converge to the same state on
χ . Suppose that s1 and s2 are taken from U , where s2 is on
χ at phase θ , i.e., s2 = s0(θ ). If s1 and s2 are asymptotically
equivalent, we define the phase of s1 as

�(s1) = �(s2) = θ. (7)

Note that the convergence concept of the solutions in hybrid
dynamical systems demands somewhat careful attention (see
Appendix C for details). Some properties of the isochron and
the phase function on U are discussed in Appendix D.

The above definition of the phase guarantees that the
following relation holds for almost all t (excluding the
Lebesgue measure zero set of the moments of switching) for
an unperturbed oscillator:

θ̇(t) = �̇(I (t),X(t))

= ∇�(I (t),X(t)) · F(I (t),

X(t)) = 1, (8)

where ∇� represents the gradient of � with respect to X .
Namely, the phase θ rotates on a circle T1 at a constant
frequency 1.

When a sufficiently small perturbation ε p(I (t),X(t),t) with
|ε| 	 1 is introduced to the oscillator as

Ẋ(t) =F(I (t),X(t)) + ε p(I (t),X(t),t), (9)

we can obtain the following approximate phase equation
closed in θ at the lowest order:

θ̇(t) = �̇(I (t),X(t))

= 1+ε∇�(I0(θ ),X0(θ ))· p(I0(θ ),X0(θ ),t)+O(ε2)

= 1 + εZ(θ ) · p(I0(θ ),X0(θ ),t) + O(ε2), (10)

where we defined the phase sensitivity function

Z(θ ) = ∇�(I0(θ ),X0(θ )) (11)

characterizing the linear response property of the oscillator
phase to perturbations. We consider that the phase evolves
as a solution of a suitably regularized, multivalued system of
Eq. (10), such as the Filippov system [37,38]. (We do not
consider impulsive perturbation at the moment of switching
in this study, which requires special treatment.) The ideas
underlying the phase approximation Eq. (10) and some notes
on the notion of the solution of it are given in Appendix E.

Thus, once we obtain the phase sensitivity function
Z(θ ), the dynamics of a weakly perturbed hybrid limit
cycle described by Eq. (9) can be reduced to a single phase

equation (10). Using the reduced phase equation, we can
analyze various synchronization dynamics of hybrid limit
cycles in detail. As we derive in Appendix F, Z(θ ) is given by
a periodic solution to the following adjoint system:

Ż(t) = −A†(k,t)Z(t)

for t (mod T ) ∈ (τk−1(s∗),τk(s∗)), (12)

Z(t) = (Ck)†Z(t + 0) at t (mod T ) = τk(s∗), (13)

which is normalized to satisfy Eq. (8) on χ , that is,

Z(t) · F(I0(t),X0(t)) = 1. (14)

Here A(k,t) = DF(k,X0(t)) is the Jacobi matrix of F(k,X)
estimated on χ , and Ck is a “saltation matrix” [9] given by

Ck = D�k(X0(τk(s∗))) −[D�k(X0(τk(s∗)))Ẋ0(τk(s∗))

−Ẋ0(τk(s∗)+0)]⊗
( ∇Lk(X0(τk(s∗)))

∇Lk(X0(τk(s∗))) · Ẋ0(τk(s∗))

)
,

(15)

where D�k is the Jacobi matrix of �k and ⊗ represents a tensor
product of two vectors. Ck represents expansion or contraction
of small deviations from χ by the mapping �k at the switching
t = τk(s∗), where the second term on the right-hand side takes
into account the shift in the switching time caused by the
perturbation. In general, the above adjoint system can be
integrated only backward in time because Ck can be singular.

In numerical calculations, we integrate these adjoint equa-
tions backward in time with occasional renormalization of Z(t)
so Eq. (14) is satisfied. Then, reflecting the linear stability of χ ,
all modes except the neutrally stable periodic solution decay
and Z(θ ) is eventually obtained. This is a standard procedure
for calculating Z(θ ) of ordinary limit cycles and is called the
adjoint method after Ermentrout [24].

IV. EXAMPLES

As an application of the phase reduction theory for hybrid
limit cycles that we developed, we analyze injection locking
of hybrid limit-cycle oscillators, i.e., synchronization of the
oscillator to a periodic external signal [18]. We apply a weak
periodic signal p(t) = p(t + Text) to the hybrid limit cycle
described by Eqs. (1) and (2). Using the phase reduction theory,
the state of the perturbed oscillator, described by Eq. (9), can
be approximately represented by its phase θ , which obeys the
reduced phase equation (10).

To analyze the synchronization dynamics, we consider the
phase difference ψ between the oscillator and the periodic
signal,

ψ = θ − T

Text
t, (16)

where θ is the phase of the hybrid limit cycle, T is the natural
period of the hybrid limit cycle, and Text is the period of the ex-
ternal periodic signal. The frequency mismatch between the os-
cillator and the signal is given by ε� = 1 − T/Text. As shown
in Appendix G, using the standard averaging approximation
for weakly perturbed oscillators [18,19,24], the dynamics of
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FIG. 2. The glued Stuart-Landau oscillator. (a) The periodic orbit of a glued Stuart-Landau oscillator. The phase of the oscillator is shown
in color code. The arrows represent the direction of the time evolution of the continuous state. The broken arrows indicate jumps. [(b) and (c)]
The x and y components of the phase sensitivity function Z(θ ) obtained by the direct method (circles) and by the proposed adjoint method
(lines).

ψ can be derived from the reduced phase equation (10) as

ψ̇ = ε[� + 	(ψ)], (17)

where the T -periodic phase coupling function 	(ψ) is given by

	(ψ) = 1

Text

∫ Text

0
Z
(

T

Text
t + ψ

)
· p(t)dt. (18)

As mentioned previously for the phase equation, we consider
that the phase difference evolves as a solution of Eq. (17) in a
regularized sense, if necessary. See Ref. [39] for the averaging
approximation in nonautonomous systems with jumps and
multivalued right-hand sides.

Synchronization dynamics of the oscillator can easily be
understood from the phase coupling function 	(ψ). If Eq. (17)
has a stable fixed point, then the phase difference ψ converges
to this point and the oscillator is phase locked to the periodic
signal. If there exist multiple stable fixed points, then the
oscillator can be phase locked to the periodic signal at multiple
phase differences depending on the initial condition. If Eq. (17)
does not have a fixed point, then ψ continues to increase or
decrease and phase locking does not occur.

A. Glued Stuart-Landau oscillator

As the first example, we introduce an analytically tractable
model of a hybrid limit-cycle oscillator, which is constructed
by gluing two Stuart-Landau oscillators (normal forms of the
supercritical Hopf bifurcation [40]) of different amplitudes.
The glued Stuart-Landau oscillator has two discrete states I ∈
{1,2} and a two-dimensional continuous state variable X(t) =
(x(t),y(t))†, where † denotes the transpose of a matrix. The
dynamics is described by

F(1,X) =
(

x − ay − (x2 + y2)(x − by)
ax + y − (x2 + y2)(bx + y)

)
, (19)

F(2,X) =
(

x − ay − α2(x2 + y2)(x − by)
ax + y − α2(x2 + y2)(bx + y)

)
, (20)

�1(X) =
(

x
α

y

)
, �2(X) =

(
αx

y

)
, (21)

�1,2 = {X | (L1(X) = 0) ∩ (x � 0)},
�2,1 = {X | (L2(X) = 0) ∩ (x � 0)},

L1(X) = y, L2(X) = −y, (22)

and the parameters are set as a = 2π + 1, b = 1, and α = 2.
With these parameter values, this system has a stable limit
cycle of period T = 1. We take the origin of the phase θ = 0
at I = 1 and X = (0,1)†, i.e., �(1,(0,1)†) = 0.

The periodic orbit χ is depicted on R2 [Fig. 2(a)], which
satisfies

(I0(θ ),X0(θ )) = (1,(− sin(2πθ ), cos(2πθ ))) (23)

for θ ∈ D1, and

(I0(θ ),X0(θ )) = (2,(−0.5 sin(2πθ ),0.5 cos(2πθ ))) (24)

for θ ∈ D2, where D1 = [0,0.25) ∪ [0.75,1) and D2 =
[0.25,0.75) are domains of the phase.

The phase sensitivity function can be obtained by solving
the adjoint linear problem analytically and is given by

Z(θ ) = − 1

2π
(cos 2πθ − sin 2πθ, sin 2πθ + cos 2πθ )†

(25)

for θ ∈ D1 and

Z(θ ) = − 1

π
(cos 2πθ − sin 2πθ, sin 2πθ + cos 2πθ )† (26)

for θ ∈ D2.
For the waveform of the periodic injection signal p(t) =

(p1(t),p2(t))†, we consider rectangular waves:

p1(t) = −c (if t mod Text ∈ D), 0 (otherwise), (27)

and

p2(t) = 0 for all t, (28)

where the constant c > 0 is set so the squared mean of the
injection signal becomes unity, i.e., 〈 p2〉 ≡ 1

Text

∫ Text

0 p2(t)dt =
1 unless otherwise specified, and D is the time domain where
the forcing takes place.

In Figs. 2(b) and 2(c), the phase sensitivity function Z(θ )
obtained by analytically solving the proposed adjoint systems
is compared with the result of the direct numerical simulation
(see Appendix H for details). The results are in good agreement
and show the validity of the proposed adjoint method. The
discontinuities in Z(θ ) are characteristic of a hybrid limit-cycle
oscillator.

Figure 3(a) displays the averaged dynamics of the phase
difference ψ for several initial values, where the result of phase
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FIG. 3. Phase reduction analysis of the injection locking of a glued Stuart-Landau oscillator. (a) Dynamics of the phase difference ψ . Time
derivative ψ̇ plotted as a function of ψ , where three stable fixed points (circles) coexist (top panel). Trajectories of ψ from 50 different initial
states obtained by direct numerical simulation of the original model, converging to the stable fixed points (bottom panel). The parameters are set
as ε = 0.1, Text/T = 1.002, and the domain where p1(t) takes a nonzero value is D = {t | 0 � t � Text/64 ∪ 3Text/8 � t � 25Text/64}. (b) The
Arnold tongue showing the region where phase locking takes place. Here D = {t | 0 � t � Text/2}. (c) The phase coupling function with sharp
corners (top panel) and the period of the phase slipping plotted in log-linear scales (bottom panel). Here ε = 0.01 and D = {t | 0 � t � Text/128}.
(d) Dynamics of the phase difference ψ for the mild, nonimpulsive (yellow line) and impulsive (black line) signals. Time derivative ψ̇ vs.
ψ with stable fixed points (circles) for the different frequencies of the input for each case (top panel). Trajectories of ψ from 10 different
initial states for Text/T = 1.0 (middle panel) and for Text/T = 1.005 (bottom panel). The parameters are set as follows: ε = 0.01 and
D = {t | |t − Text/4| � τText/2 ∪ |t − 3Text/4| � τText/2}.

reduction is compared with direct numerical simulations. It
can be seen that the asymptotic phase differences and their
dependence on initial conditions are well predicted from
the phase coupling function 	(ψ). Figure 3(b) shows the
boundaries of the region where the injection locking takes
place, called the Arnold tongue [19]. Results of the numerical
simulation also agree well with the analytical prediction by
the phase reduction theory. Thus, the injection locking of
hybrid limit-cycle oscillators by weak periodic input can be
theoretically predicted by using Z(θ ) obtained by the adjoint
method.

Here we emphasize one peculiar property of the hybrid os-
cillator. For smooth oscillators, the period of the phase slipping

near the critical point generally obeys the inverse square-root
scaling law, εTslip ∼ |� − �c|−1/2, where �c is the critical
value of � [18,41], because the phase coupling function 	(ψ)
generally has quadratic maximum and minimum. In contrast,
as shown in Fig. 3(c), the hybrid oscillator with discontinuous
Z(θ ) can possess nonsmooth 	(ψ) with sharp nonquadratic
maximum or minimum when subjected to impulsive signals.
For such 	(ψ), we can show that the period of phase slipping
Tslip obeys

εTslip ∼ − ln |� − �c| (29)

at the leading order in the vicinity of the critical value
�c, where �c + 	(ψ∗) = 0 and 	(ψ∗) is the extremum at

012212-5



SHO SHIRASAKA, WATARU KUREBAYASHI, AND HIROYA NAKAO PHYSICAL REVIEW E 95, 012212 (2017)

the corner of 	(ψ), and the semiderivatives 	′(ψ∗ − 0) and
	′(ψ∗ + 0) are nonzero (see Appendix I for the derivation).
Since nonsmooth corners in 	(ψ) cannot exist in smooth
systems, singular scaling law of this kind is characteristic of
hybrid oscillators.

In Fig. 3(d), the transient dynamics of ψ for two different
types of rectangular wave input, one with a low-duty ratio
(impulsive) τ = 1/128 and the other with a mediate one (mild,
nonimpulsive) τ = 1/8, is compared. Here the magnitude c

of the input signal is normalized so the uniform norm of 	

becomes unity, i.e., maxψ |	(ψ)| = 1, for each case. For the
impulsive case, ψ approaches the stable phase difference ψ0

with a nonzero angle, while in the nonimpulsive case, the
approach is tangential. This implies that the decay of the devi-
ation from ψ0 is faster than exponential in the impulsive case
and the time required to establish entrainment is drastically
shorter. Moreover, variations in the input period only slightly
changes ψ0 for the impulsive input, while ψ0 shows significant
change for the nonimpulsive input. This ultrafast entrainment
and robustness of the stable phase difference can be attributed
to the existence of the region Ds where 	(ψ) is extremely
steep.

Note that the discontinuity in Z(θ ) is necessary for the
existence of such a region Ds , because 	(ψ) is given by the
convolution (18) of Z(θ ) and p(t); when the input is an ideal
impulse, the slope of 	(ψ) in Ds can be infinite. Therefore,
these interesting synchronization properties are distinctive
feature of the hybrid oscillators driven by impulsive periodic
input. Such a type of very fast (or finite-time) synchronization
has been studied for simple neuron models with discontinuity
whose Z(θ ) can be obtained analytically, as well as in some
fast-slow models in the fast-relaxation limit [33,42,43]. Our
argument based on the phase reduction theory for hybrid
limit cycles is general and can be applied to high-dimensional
systems where the nonsmoothness is not the result of adiabatic
approximation.

B. Passive bipedal walker

Next, we analyze a physical example of hybrid limit-cycle
oscillator, namely a two-link model of a passive walker
walking down a slope [44], proposed as a simple model of
biped locomotion. Figure 4(a) shows a schematic diagram of
the model, where g is the gravitational acceleration; l is the
length of the legs; M and m are the masses of the hip and the
foot, respectively; φ1 and φ2 specify the angles of the swing
and support legs; γ is the angle of the slope; and τ is a periodic
torque applied to the ankle of the support leg. It is assumed that
m/M = 0, i.e., the hip mass is much larger than the foot mass,
the tip of the support leg does not slip along the ground, and the
collision of the foot with the ground is perfectly inelastic (no
slip and no bounce). This model exhibits a stable limit-cycle
oscillation for appropriate parameter values that corresponds
to periodic movements of the legs. This is a four-dimensional
hybrid dynamical system with impacts, hence it cannot be
dealt with by the conventional methods [10,33,34] mentioned
above.

The model has a one discrete state I ∈ {1} and a continuous
state variable X(t) = (φ1(t),φ̇1(t),φ2(t),φ̇2(t))†. The dynamics

is described by

F(1,X)=

⎛
⎜⎜⎝

φ̇1

sin (φ1−γ )
φ̇2

sin (φ1−γ ) + φ̇2
1 sin φ2−cos (φ1−γ ) sin φ2

⎞
⎟⎟⎠,

(30)

�1(X) =

⎛
⎜⎜⎝

−φ1

φ̇1 cos 2φ1

−2φ1

φ̇1 cos 2φ1(1 − cos 2φ1)

⎞
⎟⎟⎠,

(31)

�1,1 = {X | (L((1,1),X) = 0) ∩ (φ2 < −δ)},
L1(X) = 2φ1 − φ2, (32)

where we have rescaled time by
√

l/g, and δ > 0 is a small
positive constant (we set δ = 0.1), which is introduced to avoid
foot scuffing (contact of the swing leg with the ground in the
middle of the swing). The parameter γ is set as γ = 0.009.
Note that Eq. (30) is an equation of motion representing
continuous dynamics of the walker during the single-leg
support phase, in which the walker stands on the support leg
and moves the swing leg, where φ1 and φ2 are the angular
coordinates of the swing and support legs. See Ref. [45] for a
detailed derivation of the above type of equations in nearly the
same setting. Note also that the main effect of the inclined
ground to the walking dynamics, i.e., the ground reaction
force, is already included in the dynamical model. This effect
is not considered a perturbation and therefore needs not be
weak, as long as the model exhibits stable rhythmic walking.
If there exist additional small effects from the flat inclined
ground, such as slight up and down, they can be incorporated
into the reduced phase model perturbatively. Finally, although
the motion of Eq. (30) during the single-leg support phase
appears to be conservative, the collision of the leg with the
ground, described Eq. (31) and Eq. (32), is perfectly inelastic
(plastic), so the impact of the leg with nonzero velocity relative
to the ground causes energy dissipation. This energy loss is
compensated by the gravitational potential energy, which is
supplied to the system at each moment of the collision of the
leg with the ground. Thus, a stable limit cycle can arise in this
hybrid dynamical system.

Figure 4(b) shows the stable periodic orbit of the model.
Using the shooting method developed in Ref. [35], a point on
χ , which we define as the origin of the phase, and the period
T of the orbit can be obtained as

s∗ = (1,(0.009000,−0.05869,−0.0009629,−0.3432)†),

T = 3.882. (33)

Figure 4(c) shows the phase sensitivity function Z(θ ) =
(Zφ1 (θ ),Zφ̇1

(θ ),Zφ2 (θ ),Zφ̇2
(θ ))† with discontinuity in the mid-

dle, which is obtained numerically by the proposed adjoint
method. The result agrees well with the one obtained by the
direct method, thus the proposed adjoint method also works
nicely for this model.
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FIG. 4. Two-link model of a passive walker walking down a slope. (a) Schematic of the model. (b) The periodic orbit of the model. The
orbit discontinuously jumps when the swing and support leg alternate with each other. The arrows represent the direction of the time evolution
of the continuous state. The broken arrows indicate jumps. The phase is shown in color code. (c) Four components of the phase sensitivity
function Z(θ ) = (Zφ1 (θ ),Zφ̇1

(θ ),Zφ2 (θ ),Zφ̇2
(θ ))† obtained by the direct method (circles) and by the proposed adjoint method (lines).

Using the reduced phase equation, we study the injection
locking of the passive walker to the periodic ankle torque
actuation. That is, we apply a weak periodic torque to the
walker, where the frequency of the torque is close to that
of the natural frequency of the walker, and analyze whether
the walker synchronizes with the applied weak torque. We
introduce periodic actuation of the ankle torque as the injection
signal p(t) = (0,τ (t),0,0)†, where

τ (t) = ce−0.5[t (mod Text)]/Text sin (4πt/Text). (34)

The magnitude c of the waveform is determined to satisfy the
normalization condition 〈 p2〉 = 1. As in the case of the glued
Stuart-Landau oscillator, we can obtain the phase coupling
function 	(ψ) from the phase sensitivity function Z(θ ) and
the injected periodic signal p(t), and predict the dynamics of
the phase difference ψ between the oscillator and the signal.

Figure 5(a) shows the dynamics of ψ . The reduced phase
equation predicts that there are two stable fixed points of ψ ,
and direct numerical simulations of the original model from
different initial conditions confirm that the phase difference of
the passive walker is actually attracted to either of the stable
fixed points. Figure 5(b) plots the Arnold tongue showing the
region where the phase locking of the passive walker to the
injected signal takes place. The results obtained by the phase

reduction theory agree well with the results obtained by direct
numerical simulations of the original model.

Thus, the proposed phase reduction theory is also useful
in analyzing realistic physical systems, even when the hy-
brid limit-cycle oscillator has a high-dimensional continuous
state.

V. SUMMARY

We formulated a phase reduction theory for a general
class of hybrid limit-cycle oscillators and derived the adjoint
equation for the phase sensitivity function. The proposed
theory provides precise phase sensitivity functions and the de-
rived phase equation accurately predicts the injection locking
properties of hybrid oscillators. We illustrated synchronization
properties characteristic to hybrid oscillators, such as ultrafast
entrainment to periodic signal and negative logarithmic scaling
at the synchronization transition, and explained them by
using the reduced phase equation with discontinuous phase
sensitivity functions.

The phase reduction theory developed in this study would
serve as a powerful tool for investigating synchronization
phenomena in complex nonsmooth systems and for finding
various applications in controlling distributed interacting
nonlinear oscillators [14–16].
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FIG. 5. Phase reduction analysis of the injection locking of the two-link model of the passive walker. (a) Dynamics of the phase difference
ψ (line). ψ̇ vs. ψ , where stable fixed points are represented by circles (top panel). Trajectories of ψ from 50 different initial states obtained by
direct numerical simulation of the original model (bottom panel). The parameters are set as ε = 0.00253 and Text/T = 1.0005. (b) The Arnold
tongue obtained by the phase reduction and by direct numerical simulation of the original model.
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APPENDIX A: ASSUMPTIONS
FOR THE PERIODIC SOLUTION

In this section, we introduce the assumptions that are nec-
essary for the periodic solution to be piecewise continuously
differentiable with respect to the initial condition [36]. Hybrid
dynamical systems can exhibit pathological behaviors, which
do not occur in smooth dynamical systems, such as the grazing,
livelock, sliding, and Zeno phenomena due to the effect of
discrete switching [9,46]. The grazing phenomenon [9] occurs
when the orbit becomes tangent to the switching surface. This
condition can be written as

∇L((i,j ),X0(t))|L=0 · Ẋ0(t) = 0, (A1)

where ∇L : G × RN → RN is the gradient of L with respect
to X and · denotes inner product of vectors. The livelock,
sliding, and Zeno phenomena [46] can arise when the points
X0(τk(s∗) + 0), k ∈ Z�0 are allowed to be accumulation
points of the switching surfaces. These conditions can lead
to infinite sensitivity to the initial conditions [47]. In this
study, we do not consider such pathological situations, namely
we assume that (C1) the orbit is always transversal to the
switching plane and that (C2) each continuous state right after
the discrete state transition has a neighborhood that is disjoint
from the switching surfaces.

APPENDIX B: LINEAR STABILITY
OF THE HYBRID LIMIT CYCLE

In this section, we formalize the linear stability of the
periodic solution. Let ξα (α = 1, . . . ,N) be the αth initial-
condition sensitivity vector [35] with respect to an initial state
s∗ = (I0(0),X0(0)) on χ at t = 0, defined as

ξα(t)= lim
ε→0

[
X(t ; (I0(0),X0(0) + εeα))−X0(t)

ε

]
. (B1)

Here the second argument of X(t ; ·) represents an initial state
that is slightly perturbed in the αth direction (eα is the αth unit
vector) from (I0(0),X0(0)) on χ . We introduce a sensitivity
matrix � = (ξ 1,ξ 2, . . . ,ξN ) ∈ RN×N as the collection of
sensitivity vectors in all directions. Note that

�(0) = (e1, . . . ,eN ) = I, (B2)

where I is the identity matrix, because X(0; (I0(0),X0(0) +
εeα)) = X0(0) + εeα .

In Refs. [35,36], the linear variational system for � has
been derived as

�̇(t) = A(k,t)�(t) for t (mod T ) ∈ (τk−1(s∗),τk(s∗)),
(B3)

�(t + 0) = Ck�(t) at t (mod T ) = τk(s∗), (B4)

where A(k,t) = DF(k,X0(t)) is the Jacobi matrix of F(k,X)
estimated on χ , and Ck is the so-called saltation matrix [9]
[Eq. (15) in the main article].

We define a monodromy matrix M from the sensitivity
matrix �(t) as M = �(T ). If this M has one simple eigenvalue
equal to 1 and all other eigenvalues lie strictly inside the unit
circle on the complex plane, the periodic solution is linearly
stable [35]. We call such a stable isolated periodic solution
a hybrid limit cycle. It can be shown that the eigenvalues
and their algebraic multiplicities of monodromy matrices do
not depend on the choice of the initial state. We can also
consider initial-condition sensitivity vectors with respect to
the state s0(θ ) = (I0(θ ),X0(θ )) on the limit cycle χ , instead of
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s∗ = (I0(0),X0(0)), as

ξα(t ; θ ) = lim
ε→0

[
X(t ; (I0(θ ),X0(θ )+εeα))−X0(t+θ )

ε

]
. (B5)

We denote by a matrix �(t ; θ ) = (ξ 1(t ; θ ),ξ 2(t ; θ ),
. . . ,ξN (t ; θ )) ∈ RN×N the collection of the sensitivity vectors
in all directions and introduce a monodromy matrix M(θ ) =
�(T ; θ ) of the linear variational system, which satisfies

�̇(t ; θ ) = A(k,t + θ )�(t ; θ )

for t + θ (mod T ) ∈ (τk−1(s∗),τk(s∗)), (B6)

�(t+0; θ )=Ck�(t ; θ ) at t+θ (mod T )=τk(s∗), (B7)

�(0; θ ) = I. (B8)

There exist a unique state transition matrix Hk(t,s) of the
linear variational system (I1.3) satisfying

�(t ; θ ) = Hk(t + θ,s + θ ) �(s; θ )

for t + θ,s + θ ∈ [τk−1(s∗) + nT ,τk(s∗) + nT ), (B9)

which is a solution to

Ḣk(t,s) = A(k,t) Hk(t,s)

for t,s ∈ [τk−1(s∗) + nT ,τk(s∗) + nT ], (B10)

with the initial condition Hk(s,s) = I.
Suppose that θ is in the interval [τm∗−1(s∗),τm∗ (s∗)), where

m∗ ∈ M0 ∪ {m0 + 1}. Using Hk(t,s), the monodromy matrix
can be expressed as M(0) = M1M2, where

M1 = H1(T ,τm0 (s∗))

(
m0∏

l=m∗

+
Hl+1(τl+1(s∗),τl(s∗))Cl

)

·Hm∗ (τm∗ (s∗),θ ) (B11)

and

M2 = Hm∗ (θ,τm∗−1(s∗)) ·
m∗−1∏
k=1

+
CkHk(τk(s∗),τk−1(s∗)).

(B12)

Here we denote by
∏+ n

i=1Yi = YnYn−1 · · · Y2Y1 the ordered
product of matrices. With these matrices M1 and M2, one
can also show that M(θ ) = M2M1, where Hk(t,s) = Hk(t +
nT ,s + nT ), which follows from A(k,t) = A(k,t + nT ), is
used. Therefore, M(0) and M(θ ) has the same set of eigenval-
ues with the same algebraic multiplicities, because the Jordan
blocks with nonzero eigenvalues of the products of the matrices
AB and BA are identical [48, Theorem 3.2.11.1.].

APPENDIX C: ASYMPTOTIC EQUIVALENCE OF INITIAL
CONDITIONS IN HYBRID DYNAMICAL SYSTEMS

In this section, we introduce an asymptotic equivalence of
the initial conditions that we use for defining the isochrons,
which differs from the one used in smooth systems. Suppose
X1(t) and X2(t) are the continuous parts of the solutions to
a system with initial conditions s1 and s2, respectively. In
smooth systems, the asymptotic equivalence relation of the
initial conditions s1 and s2 is defined as the convergence of

the error X1(t) − X2(t) in the Euclidean topology. That is,
if limt→+∞ |X1(t) − X2(t)| = 0 where | · | is the Euclidean
norm, then s1 and s2 are asymptotically equivalent. In hybrid
dynamical systems, the moments of switching of the two
solutions for these initial conditions generally do not coincide
in a finite time. Hence, the Euclidean norm of the error of the
continuous part |X1(t) − X2(t)| causes some kind of “peaking
behavior” [49]; |X1(t) − X2(t)| can be larger than a constant
c > 0 (of order |�k(X) − X|) for some t ∈ [t∗,∞] for an
arbitrarily large t∗ > 0 due to the continuous state jumps. This
violates the definition of convergence in Euclidean topology.
Therefore, we need to consider convergence in some other
suitable topology to define the asymptotic equivalence notion
in hybrid dynamical systems.

Various topologies suitable for hybrid dynamical systems
have been proposed in the literature, such as the Skorohod
topology [50], originally designed as a tool to analyze stochas-
tic processes, the topology of graphical convergence that is
based on set-valued analysis [51], and the quotient topology
generated on the hybrifold [52], which is, roughly speaking,
the manifold constructed by identifying the switching surface
�k,k+1 with its image of the transition function �k .

In this study, we adopt an asymptotic equivalence that is
based on convergence in B-topology [36], which is defined
as follows: If for any ε > 0 there exists T ∗ = T ∗(ε) > 0 such
that, in the time domain [T ∗,+∞), then every moment of
switching of the solution X2(t) lies in some ε neighborhood
of the moment of switching of the solution X1(t), and for all
t ∈ [T ∗,+∞), which are outside the ε neighborhoods of the
moments of switching of X1(t), |X1(t) − X2(t)| < ε holds,
then we call the initial conditions s1 and s2 asymptotically
equivalent. The benefit of this definition is intuitively clear;
the error |X1(t) − X2(t)| is evaluated outside of the neighbor-
hoods of the points of discontinuity, and thus we can avoid the
effect of the peaking behavior, and the error that occurs at the
moment of switching is guaranteed to disappear.

APPENDIX D: SOME PROPERTIES OF THE ISOCHRON
AND THE PHASE FUNCTION

Using the following equivalence relation [Eq. (6) in the
main article]

�(s1) = �(s2) = θ, (D1)

we can introduce the “conditional” isochron Wk(θ ) =
{X | �(k,X) = θ}, i.e., the set of continuous states sharing
the same phase value θ for each discrete state k ∈ M0.
We can then define the isochron of χ with phase θ as the
union W (θ ) = ⋃m0

k=1 (k,Wk(θ )). We note that the notion of the
isochron in hybrid dynamical systems has been proposed in
Ref. [53], but the phase dynamics of weakly perturbed hybrid
oscillators has not been discussed so far.

We can show that, in a domain Ũ ≡ A \ ⋃m0
k=1 (k,�k,k+1),

where A ⊂ U is a neighborhood of χ such that the solution
starting from the point in A is piecewise continuously diffen-
tiable with respect to the initial condition, the phase function
� is totally differentiable with respect to the continuous state
and that it is one-sided differentiable on the switching surfaces
as follows.
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We consider two slightly different initial conditions, s1 and
s2 = s1 + (0,εh), where s1,s2 ∈ A, 0 < ε 	 1, and h ∈ RN .
Note that, when s1 ∈ ⋃m0

k=1 (k,�k,k+1), h should be taken from
the subset ofRN whose elements point in the opposite direction
as F(s1) in the tangent space [54] of the switching boundary.
From the differentiability with respect to initial conditions, the
following relation holds for all t outside the ε neighborhoods
of the moments of switching,

X2(t) = X1(t) + ε�s1 (t)h + O(ε2), (D2)

where X1(t) and X2(t) are the continuous part of the solutions
with the initial conditions s1 and s2, respectively, and �s1 (t) ∈
RN×N denotes the initial condition sensitivity matrix with the
initial state s1. Since s1 and s2 are taken from A, which is a
subset of the basin of attraction U of the hybrid limit cycle χ ,
the solutions X1,X2 relax to χ , which we denote as X0,1,X0,2

in this section. One can easily see that the following relation
holds:

X0,2(t)= X0,1(t)+
∫ θ(s2)−θ(s1)

0
F(k,X0,1(t+t ′))dt ′. (D3)

Since X0,1(t) is not an equilibrium, we can assume that the first
entry F1(k,X0,1(t)) of F(k,X0,1(t)) is nonzero without loss of
generality and denote its absolute value as |F1(k,X0,1(t))| =
d. Considering the continuity of the continuous part of
the solution with respect to the initial condition and the
continuity of the vector field F(k,X) with respect to the
continuous variable X , there exists ε′ > 0 such that for any
ε < ε′, the inequality |F1(k,X0,1(t + t ′))| � d/2 holds for
t ′ ∈ [0,θ (s2) − θ (s1)]. Hence we can obtain the following
inequality for ε < ε′:

|X0,2(t) − X0,1(t)| =
∣∣∣∣
∫ θ(s2)−θ(s1)

0
F(k,X0,1(t + t ′))dt ′

∣∣∣∣
= |d||θ (s2) − θ (s1)| � d

2
|θ (s2) − θ (s1)|,

(D4)

where d is a constant vector obtained by applying the mean
value theorem to each entry of F(k,X). From Eqs. (D2)
and (D4), we can show the continuity of θ as follows:

lim
s2→s1

|θ (s2)−θ (s1)|� lim
ε→0

(∣∣∣∣2ε

d
�s1 (t)h

∣∣∣∣+O(ε2)

)
=0. (D5)

The continuity assures that θ (s2) − θ (s1) is O(ε). Therefore,
we can restate Eq. (D3) as

X0,2(t) = X0,1(t) + (θ (s2) − θ (s1))F(k,X0,1(t))

+O(ε2). (D6)

From Eqs. (D2) and (D6), we can obtain

θ (s2)−θ (s1)= ε F†(k,X0,1(t))�s1 (t)h

F†(k,X0,1(t))F(k,X0,1(t))
+O(ε2). (D7)

Now we consider the asymptotic property of �s1 (t). The
assumption (C2) in Appendix A assures that for sufficiently
small ε, there exists t∗ such that the discrete states of s1(t∗ +
nT ) and s2(t∗ + nT ) are the same and invariant for all n ∈ Z�0

for any h. We define a time-T map P : RN → RN as

P(X(t)) = X(t + T ), (D8)

and its n-fold composition as Pn. By a similar argument to
the proof of the Lemma in Appendix A in Ref. [22], we
can show that the sequences {Pn(X1(t∗))} and {D Pn(X1(t∗))}
are convergent and that limn→∞ Pn(X1(t∗)) = X0(θ∗) and
limn→∞ (D P) ◦ (Pn−1(X1(t∗)) = M(θ∗). Here θ∗ is a unique
phase value that depends on X1(t∗), and the monodromy matrix
M(θ∗) is defined in Appendix B.

Let us define Q(t∗) ≡ limn→∞ D Pn(X1(t∗)). One can
easily see that M(θ∗) Q(t∗) = Q(t∗). Using this relation and
the fact shown in Ref. [35],

lim
n→∞ Mn(θ∗) = F(I0(θ∗),X0(θ∗)) ⊗ v(θ∗), (D9)

where v(θ∗) ∈ RN is a left eigenvector of M(θ∗) corresponding
to the eigenvalue unity, one can obtain

lim
n→∞ �s1 (t∗ + nT ) = Q(t∗)�s1 (t∗)

= lim
n→∞ Mn(θ∗) Q(t∗)�s1 (t∗)

= F(I0(θ∗),X0(θ∗)) ⊗ v(θ∗) Q(t∗)�s1 (t∗).

(D10)

Note that v(θ∗) also satisfies the condition v(θ∗) ·
F(I0(θ∗),X0(θ∗)) = 1, and, hence, in fact, it is the phase sen-
sitivity function evaluated at θ = θ∗ as shown in Appendix F.

Using v(θ∗), Q(θ∗), and �s1 (θ∗), we can rewrite Eq. (D7)
as

θ (s2) − θ (s1) = εv†(θ∗) Q(t∗)�s1 (t∗)h + O(ε2)

= εv†(θ∗)R(θ∗; s1)h + O(ε2), (D11)

where R(θ∗; s1) ≡ Q(t∗)�s1 (t∗) is introduced to emphasize
that it depends only on θ∗ and s1. As shown below,
v†(θ∗)R(θ∗; s1) on the right-hand side does not depend
on the choice of θ∗. One can see that R(θ + θ ′; s1) =
�(θ ′; θ )R(θ ; s1) and that v(θ ) = �(−θ ′; θ + θ ′)v(θ + θ ′),
where �(·; θ ) and �(·; θ ) are defined in Appendix B and F,
respectively. The latter equality follows from the fact shown
in Appendix F that v(θ ) is a periodic solution of the adjoint
linear system Eqs. (F13) and (F14). Similarly to Eq. (F7), we
can show �(θ ′; θ ) = �†(−θ ′; θ + θ ′). Thus,

v†(θ+θ ′)R(θ+θ ′; s1) = v†(θ+θ ′)�(θ ′; θ )R(θ ; s1)
= (�(−θ ′; θ + θ ′)v(θ + θ ′))†R(θ ; s1)
= v†(θ )R(θ ; s1), (D12)

and we finally obtain

lim
s2→s1

|θ (s2) − θ (s1) − S†(s1)(X2(0) − X1(0))|
|X2(0) − X1(0)|

= lim
ε→0

O(ε) = 0, (D13)

where we defined S†(s1) ≡ v†(θ∗)R(θ∗; s1). This concludes
the proof of the total differentiability (and one-sided differen-
tiability at switching boundaries) of the phase.

The definition of the phase guarantees that the relation
[Eq. (7) in the main article]

θ̇(t) = �̇(I (t),X(t)) = ∇�(I (t),X(t)) · F(I (t),X(t)) = 1
(D14)

holds for an unperturbed oscillator for almost all t (excluding
the set of the moments of switching, which has zero Lebesgue
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measure) and for X(t) ∈ Ũ . From this relation, ∇� is nonzero
everywhere on in Ũ . Therefore, by using the implicit function
theorem, we can show that each connected component of the
subset of the conditional isochron W̃k(θ ) = {X | X ∈ Wk(θ ) ∩
(k,X) ∈ Ũ} is an (N − 1)-dimensional smooth submanifold
embedded in RN .

APPENDIX E: APPROXIMATION
OF THE PHASE DYNAMICS

Using the chain rule, the phase dynamics of the weakly
perturbed hybrid oscillator described by Eq. (8) in the main
article is given by

θ̇ (t) = �̇(I (t),X(t)) = 1 + ε∇�(I (t),X(t)) · p(I (t),X(t),t).
(E1)

This is still not a closed equation in the phase θ because the map
� : U → T1 is not injective. To obtain a closed equation, we
assume the magnitude ε of the perturbation to be sufficiently
small and approximate ∇�(I (t),X(t)) and p(I (t),X(t),t) by
replacing I (t) with I0(θ (t)) and X(t) with X0(θ (t)) [18]. We
can then obtain the following approximate phase equation
closed in θ at the lowest order:

θ̇ (t) = �̇(I (t),X(t))

= 1+ε∇�(I0(θ ),X0(θ )) · p(I0(θ ),X0(θ ),t)+O(ε2)

= 1 + εZ(θ ) · p(I0(θ ),X0(θ ),t) + O(ε2), (E2)

where we defined the phase sensitivity function Z(θ ) =
∇�(I0(θ ),X0(θ )) characterizing the linear response property
of the oscillator phase to weak external perturbations.

We interpret Eq. (E2) as a suitably regularized, multi-
valued system, such as the Filippov system [37,38], since
some important solutions cannot be obtained in the classical
Carathéodory sense [37]. For example, a stable stationary
solution at the point of discontinuity of the right-hand side of
Eq. (E2) is, in general, not a Carathéodory solution, because
it is required to satisfy Eq. (E2) for almost all t by definition,
but the desired stationary solution may not satisfy Eq. (E2) for
all t .

When the perturbation p is locally bounded, we can
introduce the Filippov solution to Eq. (E2) as an absolutely
continuous map θ (t) : R → T1, which satisfies the following
differential inclusion:

θ̇ (t) ∈ 1 + εG(θ,t) (E3)

for almost all t , where G(θ,t) is a set of closed con-
vex combinations of Z(θ − 0) · p(I0(θ − 0),X0(θ − 0),t) and
Z(θ + 0) · p(I0(θ + 0),X0(θ + 0),t). Obviously, the Filippov
system Eq. (E3) allows stationary solutions at the point of
discontinuity described above. Note that the above Filippov
regularization of the system can also produce physically
meaningless solutions. For example, the Filippov system
admits an evidently unfeasible, unstable stationary solution
staying at the point of discontinuity of the right-hand side of
Eq. (E2). This kind of solution, called a parasite solution [55],
should be carefully omitted. See Refs. [37,38] for sufficient
conditions for the existence and uniqueness of solution to the
Filippov system.

When the perturbation is not locally bounded, for instance,
when it includes the Dirac δ function, we need to consider a
physically relevant solution, which is generally not absolutely
continuous, by employing suitable formulations such as
impulse differential inclusions [56] or measure-driven
differential inclusions [57]. Though we do not consider such a
special situation in this study, if an impulsive input is applied at
the moment of switching of the discrete states, it requires spe-
cial attention because the choice of the value of the integrand at
the atom of the driving measure crucially affects the solution.

Consider the case where an impulsive input p(·, · ,t) =
cδ(t − τ ), where δ(·) is Dirac’s δ function, is applied at the
moment of switching t = τ . If the impulsive input is applied
when the state (I0(θ (τ )),X0(θ (τ ))) is on the switching plane,
then there are two possible cases: (a) (∇LI0(θ(τ ))(X0(θ (τ ))) ·
c)(∇LI0(θ(τ ))(X0(θ (τ ))) · Ẋ0(θ (τ ))) > 0, i.e., the perturbation
and the vector field point in the same direction in the tangent
space [54] of the switching boundary, or (b) otherwise. In
case (a), the one-sided derivative of the phase function �

in the direction of c is undefined. If we redefine the hybrid
automaton Eq. (1)–(3) in the main article, for example, by
replacing the switching surface with the switching region
�ij = {X | L((i,j ),X) � 0}, then we can introduce a
one-sided derivative of � in the direction of c. However,
in general, it does not coincide with the phase sensitivity
function obtained from the proposed adjoint method. Hence,
this situation requires special treatments beyond the scope of
this study. In case (b), we can adopt Z(θ (τ ) − 0) as the phase
sensitivity function. When the input is added immediately after
the reset of the discrete state, which can also be interpreted as a
perturbation to the transition function as �I0(θ(τ ))(X0(θ (τ ))) +
c, we can adopt Z(θ (τ ) + 0) as the phase sensitivity function.

APPENDIX F: ADJOINT EQUATION FOR THE PHASE
SENSITIVITY FUNCTION

An adjoint linear system to Eqs. (B3) and (B4) can also be
introduced as

�̇(t) = −A†(k,t) �(t) for t (mod T ) ∈ (τk−1(s∗),τk(s∗)),
(F1)

�(t) = C†
k �(t + 0) at t (mod T ) = τk(s∗), (F2)

with the initial condition

�(0) = I. (F3)

Note that the above adjoint system can be integrated
only backward in time because Ck can be singular. The
state transition matrix Hk(t,s) of the variational equa-
tion [see Eqs. (B9) and (B10) for the definition] can al-
ways be inverted when t,s ∈ [τk−1(s∗) + nT ,τk(s∗) + nT ]
for each k = 1, . . . ,m0. In each time domain, we can
obtain (

Ḣ−1
k

)†
(t,s) = −A†(k,t)

(
H−1

k

)†
(t,s)

for t,s ∈ [τk−1(s∗) + nT ,τk(s∗) + nT ] (F4)

by differentiating the identity

H−1
k (t,s) · Hk(t,s) = I (F5)
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with t . Using the periodicity Hk(t,s) = Hk(t + nT ,s + nT ), we can formally consider that Eq. (F4) holds in the negative
time domain. Thus, the matrix (H−1

k )†(t,s) satisfies the adjoint system (F1) within each time interval with the initial condition
(H−1

k )†(s,s) = I. Thus, (H−1
k )†(t,s) is a state transition matrix of the adjoint Eqs. (F1) satisfying

�(t) = (
H−1

k

)†
(t,s)�(s) for t,s ∈ (τk−1(s∗)−(n+1)T ,τk(s∗)−(n+1)T ],

k∈M0 and for t,s ∈ (τm0 (s∗) − (n + 1)T , − nT ]. (F6)

We define a monodromy matrix of the adjoint system as Madj = �(−T ). It is easy to see that Madj can be expressed as

Madj =
(

m0∏
k=1

+(
H−1

m0+1−k

)†(
τm0−k(s∗),τm0+1−k(s∗)

)
C†

m0+1−k

)(
H−1

1

)†(
τm0 (s∗),T

)

=
(

m0∏
k=1

+
H†

m0+1−k

(
τm0+1−k(s∗),τm0−k(s∗)

)
C†

m0+1−k

)
H†

1

(
T ,τm0 (s∗)

) = M†. (F7)

In the second equality, we used the relation Hk(t,s) =
H−1

k (s,t). Similarly, we consider adjoint linear systems cor-
responding to the systems with initial variations Eq. (B1),
whose solutions are �(· ; θ ), which satisfies

�̇(t ; θ ) = −A†(k,t + θ ) �(t ; θ )

for t + θ (mod T ) ∈ (τk−1(s∗),τk(s∗)), (F8)

�(t) = C†
k �(t + 0) at t + θ (mod T ) = τk(s∗), (F9)

�(0; θ ) = I. (F10)

It can be easily shown that Madj(θ ) = M†(θ ), where Madj(θ ) ≡
�(−T ; θ ).

Since we assume that the hybrid limit cycle χ is linearly
stable, the monodromy matrix M(θ ) has a single eigenvalue
1 and all other eigenvalues are strictly inside the unit circle
on the complex plane. We denote the eigenvalues as λi (i =
1,2, . . . ,N ) and the corresponding right eigenvectors as ui(θ ),
where λ1 = 1 and |λi | < 1 (i = 2, . . . ,N). For simplicity, we
hereafter consider the case where all eigenvalues are real and
semisimple. A similar argument holds for the case of complex
conjugates and eigenvalues with the generalized eigenspaces.
It can be shown that ui(θ ) corresponding to the eigenvalue
λi with |λi | < 1 (i = 2, . . . ,N) is tangent to the conditional
isochron WI0(θ)(θ ) at X0(θ ), and that the right eigenvector
corresponding to λ1 = 1 is tangent to the limit cycle χ at s0(θ ).

Let η(t) be a variation vector from the unperturbed limit-
cycle orbit X0(t + θ ). If the initial value η(0) = εh, where
|ε| 	 1, given to the initial state X0(θ ) is parallel to the
eigenvector ui(θ ) corresponding to |λi | < 1(i = 2, · · · ,N ),
i.e., η(0) ∝ ui(θ ), the linear response to the initial perturbation
η(0) eventually vanishes, i.e.,

lim
n→∞ η(nT ) = lim

n→∞ ε�(nT ; θ )h

= lim
n→∞ εM(θ )nh = lim

n→∞ ελn
i h = 0, (F11)

as the system state revolves around χ . Hence, the state
limn→∞[X0(nT + θ ) + η(nT )] can be approximated by
X0(θ ) + O(ε2), and it shares the same phase with X0(θ ) +
η(0). Using the total differentiability of the phase function �

with respect to the continuous state, the directional derivative

of the phase in the direction h is obtained as

∇�(I0(θ ),X0(θ )) · h

= lim
ε→0

�(I0(θ ),X0(θ ) + η(0)) − �(I0(θ ),X0(θ ))

ε

= lim
ε→0

�(I0(θ ),X0(θ ) + O(ε2)) − �(I0(θ ),X0(θ ))

ε

= lim
ε→0

O(ε) = 0. (F12)

Therefore, ui(θ )(i = 2, . . . ,N) is tangent to WI0(θ)(θ ) at X0(θ ).
In contrast, if η(0) is parallel to u1, η(t) does not decay
since M(θ )nη(0) = η(0). In Ref. [35, Theorem 4.2.], it is
shown that F(I0(θ ),X0(θ )) is a right eigenvector of M(θ )
associated with the eigenvalue of unity. Hence u1(θ ) is parallel
to F(I0(θ ),X0(θ )), which means that it is tangent to the limit
cycle χ at s0(θ ).

We denote the left eigenvector corresponding to eigenvalue
λ1 = 1 of M(θ ) as Z(θ ). Then, Z(θ ) is orthogonal to all right
eigenvectors ui(θ ) (i = 2, . . . ,N) with eigenvalues |λi | < 1,
namely Z(θ ) is normal to the submanifold WI0(θ)(θ ) at s0(θ )
and is parallel to the gradient vector ∇�|s0(θ). Thus, when Z(θ )
is normalized so Z(θ ) = ∇�|s0(θ) holds, it gives the linear
response of the phase variable to an applied perturbation, and
hence we call it a phase sensitivity function.

In the following, we describe why one can obtain the phase
sensitivity function from the adjoint equation. Since the system
given by (F1) and (F2) is linear, the solution of the adjoint linear
system

ψ̇(t) = −A†(k,t)ψ(t) for t (mod T ) ∈ (τk−1(s∗),τk(s∗)),
(F13)

ψ(t) = C†
kψ(t + 0) at t (mod T ) = τk(s∗), (F14)

where ψ(t) ∈ RN , is given as ψ(t) = �(t)ψ(0). If we write
ψ(0) as Z1 + Z2, where Z1 is the projection of ψ(0) onto the
space spanned by Z(0) and Z2 is the remainder, the backward-
in-time asymptotic solution is

lim
n→∞ ψ(−nT ) = lim

n→∞ Madj(0)n(Z1 + Z2)

= lim
n→∞ M†(0)n(Z1 + Z2) = Z1, (F15)

012212-12



PHASE REDUCTION THEORY FOR HYBRID NONLINEAR . . . PHYSICAL REVIEW E 95, 012212 (2017)

because Z(0) is a right eigenvector of M†(0) corresponding
to the eigenvalue λ1 = 1. From Eq. (F15), one can see that
the backward-in-time asymptotic solution is periodic, hence
we write it as ψ0(θ ) with the initial value ψ0(0) = Z1.
The vector ψ0(θ ) is parallel to Z(θ ) because the equalities
Madj(θ )ψ0(θ ) = M†(θ )ψ0(θ ) = ψ0(θ ) hold, where the last
equality means that ψ0(θ ) is a left eigenvector of M(θ ) with
a corresponding eigenvalue of unity. We normalize ψ(0) as
follows:

ψ(0) · F(I0(0),X0(0)) = 1. (F16)

Since F(I0(0),X0(0)) is a right eigenvector of M(0) corre-
sponding to the eigenvalue λ1 = 1, Z2 · F(I0(0),X0(0)) =
0 holds, and we obtain ψ0(0) · F(I0(0),X0(0)) = Z1 ·
F(I0(0),X0(0)) = 1. Therefore, under the condition (F16),
ψ0(0) is equal to the phase sensitivity function Z(0) at θ = 0
because it satisfies the relation (8).

It can be shown that the normalization condition is satisfied
for all θ , i.e., ψ0(θ ) · F(I0(θ ),X0(θ )) = 1, if ψ(0) satisfies
the above normalization condition at t = 0, as follows.
Hereafter, we formally define F(I0(t − nT ),X0(t − nT )) =
F(I0(t),X0(t)), because (I0(t),X0(t)) is a periodic solution.
By differentiating d X0(t)/dt = F(I0(t),X0(t)) by t within the
smooth interval, we obtain

d

dt

[
d X0(t)

dt

]
= d

dt
F(I0(t),X0(t)) = A(I0(t),t)

[
d X0(t)

dt

]

= A(I0(t),t)F(I0(t),X0(t)). (F17)

Thus, ξ (t) = F(I0(t),X0(t)) is a solution to the vector-valued
version of the linearized system (B3) and (B4),

d

dt
F(I0(t),X0(t))= A(I0(t),t)F(I0(t),X0(t)), (F18)

from which we can derive
d

dt
(ψ(t) · F(I0(t),X0(t)))

= d

dt
ψ(t) · F(I0(t),X0(t)) + ψ(t) · d

dt
F(I0(t),X0(t))

= −A(I0(t),t)†ψ(t) · F(I0(t),X0(t)))

+ψ(t) · A(I0(t),t)F(I0(t),X0(t))) = 0. (F19)

At the moment of switching [t (mod T ) = τk(s∗)], the variation
ξ (t) = F(I0(t),X0(t)) changes as

F(k + 1,X0(t)) = Ck F(k,X0(t)). (F20)

Thus,

ψ(t + 0) · F(k + 1,X0(t))

=ψ(t + 0) · Ck F(k,X0(t))=C†
kψ(t + 0) · F(k,X0(t))

= ψ(t) · F(k,X0(t)). (F21)

Therefore, the quantity ψ(t) · F(I0(t),X0(t)) is invariant under
the backward time evolution of the system given by (F13)
and (F14).

Summarizing, we can obtain Z(θ ) by integrating the adjoint
system (F13) and (F14) backward in time from a initial
condition that satisfies the normalization condition (F16)
until a periodic solution is obtained. In conventional smooth
systems, this procedure is called the adjoint method [24].

APPENDIX G: AVERAGING APPROXIMATION AND
ANALYSIS OF THE SYNCHRONIZATION DYNAMICS

By differentiating both sides of Eq. (13) in the main
article with respect to time and substituting the phase equation
Eq. (E2), we obtain a nonautonomous system

ψ̇ = ε[� + Z((T/Text)t + ψ) · p(t)]. (G1)

The averaging approximation for weakly perturbed oscilla-
tors [18,19,24] provides the following autonomous system:

ψ̇ = ε[� + 	(ψ)] ≡ J (ψ), (G2)

where

	(ψ) = 1

Text

∫ Text

0
Z[(T/Text)t + ψ] · p(t)dt. (G3)

We here summarize some useful theorems for the analysis
of the synchronization dynamics. Bogolyubov’s second theo-
rem [21,40,58] affirms that the existence of a hyperbolic fixed
point ψ∗, i.e., J (ψ∗) = 0 and J ′(ψ∗) �= 0, of the averaged
system Eq. (G2) assures its corresponding unique hyperbolic
periodic solution of the original system Eq. (G1) evolving in
the neighborhood of ψ∗ whose radius tends to zero together
with ε. The Eckhaus–Sanchez-Palencia theorem [59] says that
if ψ∗ is a stable hyperbolic fixed point of the averaged system,
the solution of the nonaveraged system starting from the basin
of attraction is estimated up to O(ε) by the averaged one with
the same initial condition, which is uniformly valid over a
semi-infinite time interval. Samoilenko and Stanzhitskii [60]
have given similar results under a less restrictive condition,
where the hyperbolicity assumption in the Eckhaus–Sanchez-
Palencia theorem is replaced by the asymptotic stability.
These theorems mean that in each basin of attraction, the
precise behavior of the original system can be captured by the
averaged system. Moreover, if the averaged system undergoes
a saddle-node bifurcation at � = �c and |ε| is sufficiently
small, the original system (in fact, its Poincaré map) also
undergoes a saddle-node bifurcation at �̃c near �c [40].
Finally, from Bogolyubov’s first theorem [21,40,58], even
when the averaged system has no asymptotically stable fixed
points, the solution of the nonaveraged system is estimated up
to O(ε) on a time scale of order O(1/ε).

Using the above theorems, synchronization dynamics of the
oscillator can be easily understood from the T -periodic func-
tion 	(ψ) as follows: If the condition � ∈ [− max 	(ψ), −
min 	(ψ)] is satisfied, Eq. (G2) has at least one fixed point
ψ∗ that satisfies � + 	(ψ∗) = 0. When it is asymptotically
stable, the oscillator is locked to the external forcing and
the stable phase difference between the oscillator and the
forcing is approximated by ψ∗. If there are two or more
stable fixed points, then the oscillator can synchronize with
the periodic forcing at multiple phase differences depending on
the initial condition. Each basin of attraction and convergence
rate toward the stable phase differences can be estimated
from 	(ψ). Appearances and disappearances of stable phase
differences, depending on the parameter of the frequency
mismatch �, can also be predicted from 	(ψ). When there
are no stable phase differences, the phase slipping behavior
occurs. The mean period of the phase slipping can also be
estimated from 	(ψ).
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When one considers Eq. (G1) as a regularized multi-
valued system as explained in Appendix E, the integral in
Eq. (G3) should be interpreted in a suitable sense such as
Aumann’s [61], and the differential equation Eq. (G2) should
be replaced by a differential inclusion. See Ref. [39] for
the theories including analogues of the theorems mentioned
above on the averaging approximation in systems with jumps
and multivalued right-hand sides. Note that the jumps in the
solution in Ref. [39] are assumed to occur when the solution
collides with a switching surface described by t = τ (ψ) in the
extended phase space, which is suitable to the case where one
considers the injection locking to a periodic impulsive signal.

Finally, when the mutual entrainment of pulse-coupled
oscillators is analyzed [42], which we do not consider in
this study, averaging approaches of the above kind should
be generalized to the autonomous case. The averaging theory
for autonomous systems with jumps has so far been limited to
a specific cases [62], and establishment of a general theory is
desirable.

APPENDIX H: DIRECT METHOD FOR MEASURING
THE PHASE SENSITIVITY FUNCTION

In the direct method, the βth element Zβ(θ ) of Z(θ )
is computed as follows: First, we kick the system state
(I0(θ ),X0(θ )) on the limit cycle χ by applying a weak impul-
sive perturbation (0,εeβ). We then evolve the orbit (I (t),X(t))
from the perturbed initial condition (I0(θ ),X0(θ ) + εeβ). After
a long time, the perturbed orbit (I (t),X(t)) returns suffi-
ciently close to the limit cycle χ and the phase θ (I (t),X(t))
can be measured. Because the phase difference between
two unperturbed systems is time invariant, θ (I (t),X(t)) − tr ,
where tr = t mod T , is equal to the initial phase difference
θ (I0(θ ),X0(θ ) + εeβ) − θ . Thus, for sufficiently small ε, we
can calculate Zβ(θ ) according to:

Zβ(θ ) = Z(θ ) · eβ ≈ [θ (I0(θ ),X0(θ ) + εeβ) − θ ]

ε

= [θ (I (t),X(t)) − tr ]

ε
. (H1)

In the direct method, the perturbation needs to be sufficiently
small, as strong perturbations induce nonlinearity in the phase
response. However, too-weak perturbations result in tiny phase
responses, which are difficult to measure accurately. Thus,
the direct method is vulnerable to incorrect estimation of the
phase response. Moreover, the direct method requires much
longer computation times than those for the adjoint method.
To calculate Z(θ ) at m points on the limit cycle in hybrid
dynamical systems with N -dimensional continuous states, it
is necessary to repeat the above long-time evolution m × N

times if we use the direct method. In contrast, we need only
a single long-time evolution in the adjoint method. Therefore,
the adjoint method has a significant advantage in computing
Z(θ ).

APPENDIX I: DERIVATION OF THE NEGATIVE
LOGARITHMIC SCALING LAW

From Eq. (G2), the period of phase slipping is estimated as

Tslip =
∣∣∣∣
∫ T

0

dψ

ε[� + 	(ψ)]

∣∣∣∣. (I1)

We suppose 	(ψ) has a maximum −�c (the argument of
the same kind holds for the minimum) at ψ = ψ∗ and
suppose the semiderivatives 	′(ψ∗ − 0) = β1,	

′(ψ∗ + 0) =
β2 are nonzero. When � is sufficiently close to the critical
value �c, Tslip is evaluated as

Tslip � − 1

ε

[ ∫ ψ∗

0

dψ

� − �c + β1(ψ − ψ∗)

+
∫ T

ψ∗

dψ

� − �c + β2(ψ − ψ∗)

]

� − 1

ε

[ ∫ ψ∗

−∞

dψ

� − �c + β1(ψ − ψ∗)

+
∫ ∞

ψ∗

dψ

� − �c + β2(ψ − ψ∗)

]

= − 1

ε

(
1

β1
− 1

β2

)
ln |� − �c|. (I2)

Hence, Tslip increases as − ln |� − �c| when � → �c.
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the Theory of Non-Linear Oscillations (Gostexizdat, Moscow,
1949).

[24] G. B. Ermentrout and D. H. Terman, Mathematical Foundations
of Neuroscience (Springer, New York, 2010).

[25] K. Yoshimura and K. Arai, Phys. Rev. Lett. 101, 154101 (2008);
J-N. Teramae, H. Nakao, and G. B. Ermentrout, ibid. 102,
194102 (2009); D. S. Goldobin, J-N. Teramae, H. Nakao, and
G. B. Ermentrout, ibid. 105, 154101 (2010).
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