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Noise-induced synchronization of oscillatory convection and its optimization
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We investigate common-noise-induced phase synchronization between uncoupled identical Hele-Shaw cells
exhibiting oscillatory convection. Using the phase description method for oscillatory convection, we demonstrate
that the uncoupled systems of oscillatory Hele-Shaw convection can exhibit in-phase synchronization when
driven by weak common noise. We derive the Lyapunov exponent determining the relaxation time for the
synchronization, and develop a method for obtaining the optimal spatial pattern of the common noise to achieve
synchronization. The theoretical results are confirmed by direct numerical simulations.
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I. INTRODUCTION

Populations of self-sustained oscillators can exhibit various
synchronization phenomena [1–5]. For example, it is well
known that a limit-cycle oscillator can exhibit phase locking
to a periodic external forcing; this phenomenon is called the
forced synchronization [1–3]. Recently, it was also found that
uncoupled identical limit-cycle oscillators subject to weak
common noise can exhibit in-phase synchronization; this
remarkable phenomenon is called the common-noise-induced
synchronization [6–9]. In general, each oscillatory dynamics
is described by a stable limit-cycle solution to an ordinary
differential equation, and the phase description method for
ordinary limit-cycle oscillators has played an essential role
in the theoretical analysis of the synchronization phenomena
[1–3,10–14]. On the basis of the phase description, optimiza-
tion methods for the dynamical properties of limit-cycle os-
cillators have also been developed for forced synchronization
[15–19] and common-noise-induced synchronization [20–22].

Synchronization phenomena of spatiotemporal rhythms
described by partial differential equations, such as reaction-
diffusion equations and fluid equations, have also attracted
considerable attention [3,5,23,24] (see also Refs. [25–27] for
the spatiotemporal pattern formation). Examples of earlier
studies include the following. In reaction-diffusion systems,
synchronization between two locally coupled domains of ex-
citable media exhibiting spiral waves has been experimentally
investigated using the photosensitive Belousov-Zhabotinsky
reaction [28]. In fluid systems, synchronization in both peri-
odic and chaotic regimes has been experimentally investigated
using a periodically forced rotating fluid annulus [29] and a
pair of thermally coupled rotating fluid annuli [30]. Of partic-
ular interest in this paper is the experimental study on general-
ized synchronization of spatiotemporal chaos in a liquid crystal
spatial light modulator [31]; this experimental synchronization
can be considered as common-noise-induced synchroniza-
tion of spatiotemporal chaos. However, detailed theoretical
analysis of these synchronization phenomena has not been
performed even for the case in which the spatiotemporal
rhythms are described by stable limit-cycle solutions to partial
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differential equations, because a phase description method for
partial differential equations has not been fully developed yet.

In this paper, we theoretically analyze common-noise-
induced phase synchronization between uncoupled identical
Hele-Shaw cells exhibiting oscillatory convection; the oscilla-
tory convection is described by a stable limit-cycle solution to a
partial differential equation. A Hele-Shaw cell is a rectangular
cavity in which the gap between two vertical walls is much
smaller than the other two spatial dimensions, and the fluid
in the cavity exhibits oscillatory convection under appropriate
parameter conditions (see Refs. [32,33], and also references
therein). In Ref. [34], we recently formulated a theory for the
phase description of oscillatory convection in the Hele-Shaw
cell and analyzed the mutual synchronization between a pair
of coupled systems of oscillatory Hele-Shaw convection;
the theory can be considered as an extension of our phase
description method for stable limit-cycle solutions to nonlinear
Fokker-Planck equations [35] (see also Ref. [36] for the phase
description of spatiotemporal rhythms in reaction-diffusion
equations). Using the phase description method for oscillatory
convection, we here demonstrate that uncoupled systems of os-
cillatory Hele-Shaw convection can be in-phase synchronized
by applying weak common noise. Furthermore, we develop a
method for obtaining the optimal spatial pattern of the common
noise to achieve synchronization. The theoretical results are
validated by direct numerical simulations of the oscillatory
Hele-Shaw convection.

This paper is organized as follows. In Sec. II, we briefly
review our phase description method for oscillatory convection
in the Hele-Shaw cell. In Sec. III, we theoretically analyze
common-noise-induced phase synchronization of the oscil-
latory convection. In Sec. IV, we confirm our theoretical
results by numerical analysis of the oscillatory convection.
Concluding remarks are given in Sec. V.

II. PHASE DESCRIPTION METHOD
FOR OSCILLATORY CONVECTION

In this section, for the sake of readability and being
self-contained, we review governing equations for oscillatory
convection in the Hele-Shaw cell and our phase description
method for the oscillatory convection with consideration of its
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application to common-noise-induced synchronization. More
details and other applications of the phase description method
are given in Ref. [34].

A. Dimensionless form of the governing equations

The dynamics of the temperature field T (x,y,t) in the Hele-
Shaw cell is described by the following dimensionless form
(see Ref. [32], and also references therein):

∂

∂t
T (x,y,t) = ∇2T + J (ψ,T ). (1)

The Laplacian and Jacobian are respectively given by

∇2T =
(

∂2

∂x2
+ ∂2

∂y2

)
T , (2)

J (ψ,T ) = ∂ψ

∂x

∂T

∂y
− ∂ψ

∂y

∂T

∂x
. (3)

The stream function ψ(x,y,t) is determined from the temper-
ature field T (x,y,t) as

∇2ψ(x,y,t) = −Ra
∂T

∂x
, (4)

where the Rayleigh number is denoted by Ra. The system
is defined in the unit square: x ∈ [0,1] and y ∈ [0,1]. The
boundary conditions for the temperature field T (x,y,t) are
given by

∂T (x,y,t)

∂x

∣∣∣∣
x=0

= ∂T (x,y,t)

∂x

∣∣∣∣
x=1

= 0, (5)

T (x,y,t)|y=0 = 1, T (x,y,t)|y=1 = 0, (6)

where the temperature at the bottom (y = 0) is higher than that
at the top (y = 1). The stream function ψ(x,y,t) satisfies the
Dirichlet zero boundary condition on both x and y, i.e.,

ψ(x,y,t)|x=0 = ψ(x,y,t)|x=1 = 0, (7)

ψ(x,y,t)|y=0 = ψ(x,y,t)|y=1 = 0. (8)

To simplify the boundary conditions in Eq. (6), we consider
the convective component X(x,y,t) of the temperature field
T (x,y,t) as follows:

T (x,y,t) = (1 − y) + X(x,y,t). (9)

Inserting Eq. (9) into Eqs. (1) and (4), we derive the following
equation for the convective component X(x,y,t):

∂

∂t
X(x,y,t) = ∇2X + J (ψ,X) − ∂ψ

∂x
, (10)

where the stream function ψ(x,y,t) is determined by

∇2ψ(x,y,t) = −Ra
∂X

∂x
. (11)

Applying Eq. (9) to Eqs. (5) and (6), we obtain the following
boundary conditions for the convective component X(x,y,t):

∂X(x,y,t)

∂x

∣∣∣∣
x=0

= ∂X(x,y,t)

∂x

∣∣∣∣
x=1

= 0, (12)

X(x,y,t)|y=0 = X(x,y,t)|y=1 = 0. (13)

That is, the convective component X(x,y,t) satisfies the
Neumann zero boundary condition on x and the Dirichlet zero
boundary condition on y. It should be noted that this system
does not possess translational or rotational symmetry owing to
the boundary conditions given by Eqs. (7), (8), (12), and (13).

B. Limit-cycle solution and its Floquet zero eigenfunctions

The dependence of the Hele-Shaw convection on the
Rayleigh number Ra is well known, and the existence of
stable limit-cycle solutions to Eq. (10) is also well established
(see Ref. [32], and also references therein). In general, a stable
limit-cycle solution to Eq. (10), which represents oscillatory
convection in the Hele-Shaw cell, can be described by

X(x,y,t) = X0(x,y,�(t)), �̇(t) = �. (14)

The phase and natural frequency are denoted by � and
�, respectively. The limit-cycle solution X0(x,y,�) pos-
sesses the following 2π periodicity in �: X0(x,y,� + 2π ) =
X0(x,y,�). Inserting Eq. (14) into Eqs. (10) and (11), we find
that the limit-cycle solution X0(x,y,�) satisfies

�
∂

∂�
X0(x,y,�) = ∇2X0 + J (ψ0,X0) − ∂ψ0

∂x
, (15)

where the stream function ψ0(x,y,�) is determined by

∇2ψ0(x,y,�) = −Ra
∂X0

∂x
. (16)

From Eq. (9), the corresponding temperature field T0(x,y,�)
is given by (e.g., see Fig. 2 in Sec. IV)

T0(x,y,�) = (1 − y) + X0(x,y,�). (17)

Let u(x,y,�,t) represent a small disturbance added to
the limit-cycle solution X0(x,y,�), and consider a slightly
perturbed solution

X(x,y,t) = X0(x,y,�(t)) + u(x,y,�(t),t). (18)

Equation (10) is then linearized with respect to u(x,y,�,t) as
follows:

∂

∂t
u(x,y,�,t) = L(x,y,�)u(x,y,�,t). (19)

As in the limit-cycle solution X0(x,y,�), the function
u(x,y,�) satisfies the Neumann zero boundary condition on
x and the Dirichlet zero boundary condition on y. Note that
L(x,y,�) is time periodic through �. Therefore, Eq. (19) is a
Floquet-type system with a periodic linear operator. Defining
the inner product of two functions as

[[u∗(x,y,�), u(x,y,�)]]

= 1

2π

∫ 2π

0
d�

∫ 1

0
dx

∫ 1

0
dy u∗(x,y,�)u(x,y,�), (20)

we introduce the adjoint operator of the linear operator
L(x,y,�) by

[[u∗(x,y,�),L(x,y,�)u(x,y,�)]]

= [[L∗(x,y,�)u∗(x,y,�), u(x,y,�)]]. (21)

As in u(x,y,�), the function u∗(x,y,�) also satisfies the
Neumann zero boundary condition on x and the Dirichlet
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zero boundary condition on y. Details of the derivation of
the adjoint operator L∗(x,y,�) are given in Ref. [34].

In the following section, we utilize the Floquet eigenfunc-
tions associated with the zero eigenvalue, i.e.,

L(x,y,�)U0(x,y,�) = 0, (22)

L∗(x,y,�)U ∗
0 (x,y,�) = 0. (23)

We note that the right zero eigenfunction U0(x,y,�) can be
chosen as

U0(x,y,�) = ∂

∂�
X0(x,y,�), (24)

which is confirmed by differentiating Eq. (15) with respect
to �. Using the inner product of Eq. (20) with the right
zero eigenfunction of Eq. (24), the left zero eigenfunction
U ∗

0 (x,y,�) is normalized as

[[U ∗
0 (x,y,�), U0(x,y,�)]]

= 1

2π

∫ 2π

0
d�

∫ 1

0
dx

∫ 1

0
dy U ∗

0 (x,y,�)U0(x,y,�) = 1.

(25)

Here, we can show that the following equation holds (see also
Refs. [10,34,35]):

∂

∂�

[∫ 1

0
dx

∫ 1

0
dy U ∗

0 (x,y,�)U0(x,y,�)

]
= 0. (26)

Therefore, the following normalization condition is satisfied
independently for each � as follows:∫ 1

0
dx

∫ 1

0
dy U ∗

0 (x,y,�)U0(x,y,�) = 1. (27)

C. Oscillatory convection under weak perturbations

We now consider oscillatory Hele-Shaw convection with a
weak perturbation applied to the temperature field T (x,y,t)
described by the following equation:

∂

∂t
T (x,y,t) = ∇2T + J (ψ,T ) + εp(x,y,t). (28)

The weak perturbation is denoted by εp(x,y,t). Inserting
Eq. (9) into Eq. (28), we obtain the following equation for
the convective component X(x,y,t):

∂

∂t
X(x,y,t) = ∇2X + J (ψ,X) − ∂ψ

∂x
+ εp(x,y,t). (29)

Using the idea of the phase reduction [2], we can derive a
phase equation from the perturbed equation (29). Namely, we
project the dynamics of the perturbed equation (29) onto the
unperturbed solution as

�̇(t) =
∫ 1

0
dx

∫ 1

0
dy U ∗

0 (x,y,�)

[
∂

∂t
X(x,y,t)

]

=
∫ 1

0
dx

∫ 1

0
dy U ∗

0 (x,y,�)

×
[
∇2X + J (ψ,X) − ∂ψ

∂x
+ εp(x,y,t)

]

�
∫ 1

0
dx

∫ 1

0
dy U ∗

0 (x,y,�)

×
[
∇2X0 + J (ψ0,X0) − ∂ψ0

∂x
+ εp(x,y,t)

]

=
∫ 1

0
dx

∫ 1

0
dy U ∗

0 (x,y,�)

×
[
�

∂

∂�
X0(x,y,�) + εp(x,y,t)

]

=
∫ 1

0
dx

∫ 1

0
dy U ∗

0 (x,y,�)

× [�U0(x,y,�) + εp(x,y,t)]

= � + ε

∫ 1

0
dx

∫ 1

0
dy U ∗

0 (x,y,�)p(x,y,t), (30)

where we approximated X(x,y,t) by the unperturbed limit-
cycle solution X0(x,y,�). Therefore, the phase equation
describing the oscillatory Hele-Shaw convection with a weak
perturbation is approximately obtained in the following
form:

�̇(t) = � + ε

∫ 1

0
dx

∫ 1

0
dy Z(x,y,�)p(x,y,t), (31)

where the phase sensitivity function is defined as (e.g., see
Fig. 2 in Sec. IV)

Z(x,y,�) = U ∗
0 (x,y,�). (32)

Here, we note that the phase sensitivity function Z(x,y,�)
satisfies the Neumann zero boundary condition on x and the
Dirichlet zero boundary condition on y, i.e.,

∂Z(x,y,�)

∂x

∣∣∣∣
x=0

= ∂Z(x,y,�)

∂x

∣∣∣∣
x=1

= 0, (33)

Z(x,y,�)|y=0 = Z(x,y,�)|y=1 = 0. (34)

As mentioned in Ref. [34], Eq. (31) is a generalization
of the phase equation for a perturbed limit-cycle oscillator
described by a finite-dimensional dynamical system (see
Refs. [1–3,10–14]). However, reflecting the aspects of an
infinite-dimensional dynamical system, the phase sensitivity
function Z(x,y,�) of the oscillatory Hele-Shaw convection
possesses infinitely many components that are continuously
parametrized by the two variables, x and y.

In this paper, we further consider the case that the
perturbation is described by a product of two functions as
follows:

p(x,y,t) = a(x,y)q(t). (35)

That is, the space dependence and time dependence of the
perturbation are separated. In this case, the phase equation (31)
can be written in the following form:

�̇(t) = � + εζ (�)q(t), (36)

where the effective phase sensitivity function is given by (e.g.,
see Fig. 5 in Sec. IV)

ζ (�) =
∫ 1

0
dx

∫ 1

0
dy Z(x,y,�)a(x,y). (37)
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We note that the form of Eq. (36) is essentially the same
as that of the phase equation for a perturbed limit-cycle
oscillator described by a finite-dimensional dynamical system
(see Refs. [1–3,10–14]). We also note that the effective
phase sensitivity function ζ (�) can also be considered as
the collective phase sensitivity function in the context of the
collective phase description of coupled individual dynamical
elements exhibiting macroscopic rhythms [35,37,38].

III. THEORETICAL ANALYSIS OF THE
COMMON-NOISE-INDUCED SYNCHRONIZATION

In this section, using the phase description method in
Sec. II, we analytically investigate common-noise-induced
synchronization between uncoupled systems of oscillatory
Hele-Shaw convection. In particular, we theoretically deter-
mine the optimal spatial pattern of the common noise for
achieving the noise-induced synchronization.

A. Phase reduction and Lyapunov exponent

We consider N uncoupled systems of oscillatory Hele-
Shaw convection subject to weak common noise described
by the following equation for σ = 1, . . . ,N :

∂

∂t
Tσ (x,y,t) = ∇2Tσ + J (ψσ ,Tσ ) + εa(x,y)ξ (t), (38)

where the weak common noise is denoted by εa(x,y)ξ (t).
Inserting Eq. (9) into Eq. (38) for each σ , we obtain the
following equation for the convective component Xσ (x,y,t):

∂

∂t
Xσ (x,y,t) = ∇2Xσ + J (ψσ ,Xσ ) − ∂ψσ

∂x
+ εa(x,y)ξ (t).

(39)

As in Eq. (11), the stream function of each system is
determined by

∇2ψσ (x,y,t) = −Ra
∂Xσ

∂x
. (40)

The common noise ξ (t) is assumed to be white Gaussian noise
[39,40], the statistics of which are given by

〈ξ (t)〉 = 0, 〈ξ (t)ξ (s)〉 = 2δ(t − s). (41)

Here, we assume that the unperturbed oscillatory Hele-Shaw
convection is a stable limit cycle and that the noise intensity
ε2 is sufficiently weak. Then, as in Eq. (36), we can derive a
phase equation from Eq. (39) as follows [41]:

�̇σ (t) = � + εζ (�σ )ξ (t), (42)

where the effective phase sensitivity function ζ (�) is given
by Eq. (37). Once the phase equation (42) is obtained, the
Lyapunov exponent characterizing the common-noise-induced
synchronization can be derived using the argument by Teramae
and Tanaka [6]. From Eqs. (41) and (42), the Lyapunov
exponent, which quantifies the exponential growth rate of
small phase differences between the two systems, can be
written in the following form:

� = − ε2

2π

∫ 2π

0
d� [ζ ′(�)]2 � 0. (43)

Here, we used the following abbreviation: ζ ′(�) =
dζ (�)/d�. Equation (43) represents that uncoupled systems
of oscillatory Hele-Shaw convection can be in-phase synchro-
nized when driven by the weak common noise, as long as the
phase reduction approximation is valid. In the following two
sections, we develop a method for obtaining the optimal spatial
pattern of the common noise to achieve the noise-induced
synchronization of the oscillatory convection.

B. Spectral decomposition of the phase sensitivity function

Considering the boundary conditions of Z(x,y,�),
Eqs. (33) and (34), we introduce the following spectral
transformation [42]:

Zjk(�) =
∫ 1

0
dx

∫ 1

0
dy Z(x,y,�) cos(πjx) sin(πky), (44)

for j = 0,1,2, . . . and k = 1,2, . . . . The corresponding spec-
tral decomposition of Z(x,y,�) is given by

Z(x,y,�) = 4
∞∑

j=0

∞∑
k=1

Zjk(�) cos(πjx) sin(πky). (45)

By inserting Eq. (45) into Eq. (37), the effective phase
sensitivity function ζ (�) can be written in the following form:

ζ (�) =
∫ 1

0
dx

∫ 1

0
dy Z(x,y,�)a(x,y)

=
∞∑

j=0

∞∑
k=1

bjkZjk(�), (46)

where the spectral transformation of a(x,y) is defined as

bjk = 4
∫ 1

0
dx

∫ 1

0
dy a(x,y) cos(πjx) sin(πky). (47)

The corresponding spectral decomposition of a(x,y) is given
by

a(x,y) =
∞∑

j=0

∞∑
k=1

bjk cos(πjx) sin(πky). (48)

For the sake of convenience in the calculation below, we
rewrite the double sum in Eq. (46) by the following single
series:

ζ (�) =
∞∑

j=0

∞∑
k=1

bjkZjk(�) ≡
∞∑

n=0

snQn(�). (49)

In Eq. (49), we introduced one-dimensional representations,
sn = bjk and Qn(�) = Zjk(�), where the mapping between
n and (j,k) is bijective. Accordingly, we obtain the following
quantity:

[ζ ′(�)]2 =
∞∑

n=0

∞∑
m=0

snsmQ′
n(�)Q′

m(�), (50)

where Q′
n(�) = dQn(�)/d�. From Eqs. (43) and (50), the

Lyapunov exponent normalized by the noise intensity, −�/ε2,

012912-4



NOISE-INDUCED SYNCHRONIZATION OF OSCILLATORY . . . PHYSICAL REVIEW E 89, 012912 (2014)

can be written in the following form:

− �

ε2
= 1

2π

∫ 2π

0
d� [ζ ′(�)]2 =

∞∑
n=0

∞∑
m=0

Knmsnsm, (51)

where each element of the symmetric matrix K̂ is given by

Knm = 1

2π

∫ 2π

0
d�Q′

n(�)Q′
m(�) = Kmn. (52)

C. Spectral components of the optimal spatial pattern

By defining an infinite-dimensional column vector
s ≡ (s0,s1,s2, . . .)T, Eq. (51) can also be written as

− �

ε2
=

∞∑
n=0

∞∑
m=0

Knmsnsm = s · K̂s, (53)

which is a quadratic form. Using the spectral representation
of the normalized Lyapunov exponent, Eq. (53), we seek
the optimal spatial pattern of the common noise for the
synchronization. As a constraint, we introduce the following
condition:

s · s =
∞∑

n=0

s2
n =

∞∑
j=0

∞∑
k=1

b2
jk = 1. (54)

That is, the total power of the spatial pattern is fixed at unity.
Under this constraint condition, we consider the maximization
of Eq. (53). For this purpose, we define the Lagrangian F (s,λ)
as

F (s,λ) =
∞∑

n=0

∞∑
m=0

Knmsnsm − λ

( ∞∑
n=0

s2
n − 1

)
, (55)

where the Lagrange multiplier is denoted by λ. Setting the
derivative of the Lagrangian F (s,λ) to be zero, we can obtain
the following equations:

∂F

∂sl

= 2

( ∞∑
m=0

Klmsm − λsl

)
= 0 (l = 0,1,2, . . .), (56)

∂F

∂λ
= −

( ∞∑
n=0

s2
n − 1

)
= 0, (57)

which are equivalent to the eigenvalue problem described by

K̂sα = λαsα, sα · sα = 1 (α = 0,1,2, . . .). (58)

These eigenvectors sα and the corresponding eigenvalues λα

satisfy

F (sα,λα) = λα. (59)

Because the matrix K̂ , which is defined in Eq. (52), is
symmetric, the eigenvalues λα are real numbers. Consequently,
under the constraint condition given by Eq. (54), the optimal
vector that maximizes Eq. (43) coincides with the eigenvector
associated with the largest eigenvalue, i.e.,

λopt = max
α

λα. (60)
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2(

Θ
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H 1
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Θ
)

(b)

Θ

H22
H11

FIG. 1. (Color online) (a) Limit-cycle orbit projected onto the
H11-H22 plane. (b) Wave forms of H11(�) and H22(�). The Rayleigh
number is Ra = 480, and then the natural frequency is � � 622, i.e.,
the oscillation period is 2π/� � 0.010.

Therefore, the optimal spatial pattern aopt(x,y) can be written
in the following form:

aopt(x,y) =
∞∑

j=0

∞∑
k=1

bopt(j,k) cos(πjx) sin(πky), (61)

where the coefficients bopt(j,k) in the double series correspond
to the elements of the optimal vector sopt associated with λopt.
From Eq. (53), the Lyapunov exponent is then given by

�opt = −ε2λopt. (62)

Finally, we note that this optimization method can also be
considered as the principal component analysis [43] of the
phase derivative of the phase sensitivity function, ∂�Z(x,y,�).

IV. NUMERICAL ANALYSIS OF THE
COMMON-NOISE-INDUCED SYNCHRONIZATION

In this section, to illustrate the theory developed in
Sec. III, we numerically investigate common-noise-induced
synchronization between uncoupled Hele-Shaw cells exhibit-
ing oscillatory convection. The numerical simulation method
is summarized in Ref. [44].
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FIG. 2. (Color online) Snapshots of T0(x,y,�), X0(x,y,�), and Z(x,y,�) for � = 0 and � = π .

A. Spectral decomposition of the convective component

Considering the boundary conditions of the convective
component X(x,y,�), Eqs. (12) and (13), we introduce the
following spectral transformation:

Hjk(t) =
∫ 1

0
dx

∫ 1

0
dy X(x,y,t) cos(πjx) sin(πky), (63)

for j = 0,1,2, . . . and k = 1,2, . . . . The corresponding spec-
tral decomposition of the convective component X(x,y,�) is
given by

X(x,y,t) = 4
∞∑

j=0

∞∑
k=1

Hjk(t) cos(πjx) sin(πky). (64)

In visualizing the limit-cycle orbit in the infinite-dimensional
state space, we project the limit-cycle solution X0(x,y,�) onto
the H11-H22 plane as

H11(�) =
∫ 1

0
dx

∫ 1

0
dy X0(x,y,�) cos(πx) sin(πy), (65)

H22(�) =
∫ 1

0
dx

∫ 1

0
dy X0(x,y,�) cos(2πx) sin(2πy). (66)

B. Limit-cycle solution and phase sensitivity function

The initial values were prepared so that the system exhibits
single cellular oscillatory convection. The Rayleigh number
was fixed at Ra = 480, which gives the natural frequency � �
622, i.e., the oscillation period 2π/� � 0.010. Figure 1 shows
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the limit-cycle orbit of the oscillatory convection projected
onto the H11-H22 plane, obtained from direct numerical
simulations of the dynamical equation (10). Snapshots of the
limit-cycle solution X0(x,y,�) and other associated functions,
T0(x,y,�) and Z(x,y,�), are shown in Fig. 2, where the phase
variable � is discretized using 512 grid points. We note that
Figs. 1 and 2 are essentially reproductions of our previous
results given in Ref. [34]. Details of the numerical method for
obtaining the phase sensitivity function Z(x,y,�) are given in
Refs. [34,35] (see also Refs. [10–14]).

As seen in Fig. 2, the phase sensitivity function Z(x,y,�)
is spatially localized. Namely, the absolute values of the phase
sensitivity function Z(x,y,�) in the top-right and bottom-left
corner regions of the system are much larger than those in
the other regions; this fact reflects the dynamics of the spatial
pattern of the convective component X0(x,y,�).

As mentioned in Ref. [34], the phase sensitivity function
Z(x,y,�) in this case possesses the following symmetry.
For each �, the limit-cycle solution X0(x,y,�) and the
phase sensitivity function Z(x,y,�), shown in Fig. 2, are
antisymmetric with respect to the center of the system, i.e.,

X0(−xδ,−yδ,�) = −X0(xδ,yδ,�), (67)

Z(−xδ,−yδ,�) = −Z(xδ,yδ,�), (68)

where xδ = x − 1/2 and yδ = y − 1/2. Therefore, for a spatial
pattern as(x,y) that is symmetric with respect to the center of
the system,

as(−xδ,−yδ) = as(xδ,yδ), (69)

the corresponding effective phase sensitivity function ζ (�)
becomes zero, i.e.,

ζ (�) =
∫ 1

0
dx

∫ 1

0
dy Z(x,y,�)as(x,y) = 0. (70)

That is, such symmetric perturbations do not affect the phase
of the oscillatory convection.

C. Optimal spatial pattern of the common noise

The optimal spatial pattern is obtained as the best combi-
nation of single-mode spatial patterns, i.e., Eq. (61). Thus, we
first consider the following single-mode spatial pattern:

a(x,y) = a(j,k)(x,y) ≡ cos(πjx) sin(πky). (71)

Then, the effective phase sensitivity function is given by the
following single spectral component:

ζ (�) =
∫ 1

0
dx

∫ 1

0
dy Z(x,y,�) cos(πjx) sin(πky)

= Zjk(�). (72)

From Eq. (43), the Lyapunov exponent for the single-mode
spatial pattern can be written in the following form:

�(j,k) = − ε2

2π

∫ 2π

0
d�[Z′

jk(�)]2, (73)

where Z′
jk(�) = dZjk(�)/d�.

FIG. 3. (Color online) (a) Normalized Lyapunov exponent for
single-mode spatial patterns, −�(j,k)/ε2, i.e., spatial power spec-
trum of ∂�Z(x,y,�) averaged over �. (b) Spectral components of
the optimal spatial pattern, i.e., bopt(j,k).

Figure 3(a) shows the normalized Lyapunov exponent
for single-mode spatial patterns, i.e., −�(j,k)/ε2. Owing to
the antisymmetry of the phase sensitivity function, given in
Eq. (68), the normalized Lyapunov exponent −�(j,k)/ε2

exhibits a checkerboard pattern, namely, −�(j,k)/ε2 = 0
when the sum of j and k, i.e., j + k, is an odd number.
The maximum of −�(j,k)/ε2 is located at (j,k) = (10,4);
under the condition of j = k, the maximum of −�(j,k)/ε2

is located at (j,k) = (4,4). The single-mode spatial patterns,
a(10,4)(x,y), a(4,4)(x,y), and a(9,4)(x,y), are shown in Figs. 4(b),
4(c), and 4(d), respectively. We note that a(10,4)(x,y) and
a(4,4)(x,y) are antisymmetric with respect to the center of
the system, whereas a(9,4)(x,y) is symmetric. These spatial
patterns are used in the numerical simulations performed
below.

We now consider the optimal spatial pattern. Figure 3(b)
shows the spectral components of the optimal spatial pattern,
i.e., bopt(j,k), obtained by the optimization method developed
in Sec. III C. Figure 4(a) shows the corresponding optimal
spatial pattern, i.e., aopt(x,y), given by Eq. (61). As seen in
Fig. 3, when the normalized Lyapunov exponent for a single-
mode spatial pattern, −�(j,k)/ε2, is large, the absolute value
of the optimal spectral components, |bopt(j,k)|, is also large. As
seen in Fig. 4(a), the optimal spatial pattern aopt(x,y) is similar
to the snapshots of the phase sensitivity function Z(x,y,�)
shown in Fig. 2. In fact, as mentioned in Sec. III C, the optimal
spatial pattern aopt(x,y) corresponds to the first principal
component of ∂�Z(x,y,�). Reflecting the antisymmetry of the
phase sensitivity function, Eq. (68), the optimal spatial pattern
aopt(x,y) is also antisymmetric with respect to the center of
the system.
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FIG. 4. (Color online) (a) Optimal spatial pattern aopt(x,y) = ∑∞
j=0

∑∞
k=1 bopt(j,k) cos(πjx) sin(πky). (b) Single-mode spatial pat-

tern a(10,4)(x,y) = cos(10πx) sin(4πy). (c) Single-mode spatial pattern a(4,4)(x,y) = cos(4πx) sin(4πy). (d) Single-mode spatial pattern
a(9,4)(x,y) = cos(9πx) sin(4πy).

D. Effective phase sensitivity function

Figure 5 shows the effective phase sensitivity functions
ζ (�) for the spatial patterns shown in Fig. 4. When the
normalized Lyapunov exponent −�(j,k)/ε2 is large, the
amplitude of the corresponding effective phase sensitivity
function ζ (�) is also large. For the spatial pattern a(9,4)(x,y),
which is symmetric with respect to the center of the system, the
effective phase sensitivity function becomes zero, ζ (�) = 0,
as shown in Eq. (70).
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300
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Θ

optimal
(10, 4)
( 4, 4)
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FIG. 5. (Color online) Effective phase sensitivity function ζ (�)
for the following spatial patterns: aopt(x,y), a(10,4)(x,y), a(4,4)(x,y),
and a(9,4)(x,y), which are shown in Fig. 4.

To confirm the theoretical results shown in Fig. 5, we
obtain the effective phase sensitivity function ζ (�) by direct
numerical simulations of Eq. (29) with Eq. (35) as follows: We
measure the phase response of the oscillatory convection by
applying a weak impulsive perturbation with the spatial pattern
a(x,y) to the limit-cycle solution X0(x,y,�) with the phase
�; then, normalizing the phase response curve by the weak
impulse intensity ε, we obtain the effective phase sensitivity
function ζ (�). The effective phase sensitivity function ζ (�)
obtained by direct numerical simulations with impulse inten-
sity ε are compared with the theoretical curves in Fig. 6. The
simulation results agree quantitatively with the theory [45].

E. Common-noise-induced synchronization

In this section, we demonstrate the common-noise-
induced synchronization between uncoupled Hele-Shaw cells

TABLE I. Lyapunov exponents for spatial patterns with the
common noise intensity ε2 = 10−6.

spatial Lyapunov relaxation
pattern: a(x,y) exponent: � time: 1/|�|
aopt(x,y) −4.812764 × 10−2 20.778
a(10,4)(x,y) −4.749136 × 10−3 210.565
a(4,4)(x,y) −3.832018 × 10−4 2609.591
a(9,4)(x,y) −0.000000 ∞
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FIG. 6. (Color online) Comparisons of the effective phase sensitivity function ζ (�) between direct numerical simulations with impulse
intensity ε and the theoretical curve (theory) for the following spatial patterns. (a) aopt(x,y). (b) a(10,4)(x,y). (c) a(4,4)(x,y). (d) a(9,4)(x,y).

exhibiting oscillatory convection by direct numerical
simulations of the stochastic (Langevin-type) partial differen-
tial equation (39). Theoretical values of both the Lyapunov
exponents � for several spatial patterns a(x,y) with the
common noise intensity ε2 = 10−6 and the corresponding

relaxation time 1/|�| toward the synchronized state are
summarized in Table I.

Figure 7 shows the time evolution of the phase differences
|�1 − �σ | when the common noise intensity is ε2 = 10−6.
The initial phase values are �σ (t = 0) = 2π (σ − 1)/128 for

FIG. 7. (Color online) Time evolution of phase differences |�1 − �σ | with the common noise intensity ε2 = 10−6. The initial phases
are �σ (t = 0) = 2π (σ − 1)/128 for σ = 1, . . . ,12. The spatial patterns of common noise are as follows. (a) aopt(x,y). (b) a(10,4)(x,y).
(c) a(4,4)(x,y). (d) a(9,4)(x,y).
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FIG. 8. (Color online) Time evolution of H
(σ )
22 (t), which corresponds to Fig. 7, for the following spatial patterns. (a) aopt(x,y). (b) a(10,4)(x,y).

(c) a(4,4)(x,y). (d) a(9,4)(x,y).

σ = 1, . . . ,12. Figure 8 shows the time evolution of H
(σ )
22 (t),

which corresponds to Fig. 7. The relaxation times estimated
from the simulation results agree reasonably well with the
theory [46]. As seen in Figs. 7 and 8, the relaxation time for
the optimal spatial pattern aopt(x,y) is actually much smaller
than those for the single-mode spatial patterns. For the cases of
single-mode patterns, the relaxation time for the single-mode
spatial pattern a(10,4)(x,y) is also smaller than those for the
other single-mode spatial patterns, a(4,4)(x,y) and a(9,4)(x,y).
We also note that the time evolution of both |�1 − �σ | and
H

(σ )
22 (t) for a(10,4)(x,y) is significantly different from that for

a(9,4)(x,y) in spite of the similarity between the two spatial
patterns of the neighboring modes; this difference results from

the difference of symmetry with respect to the center, as shown
in Eq. (70).

Figure 9 shows a quantitative comparison of the Lyapunov
exponents between direct numerical simulations and the theory
for the case of the optimal spatial pattern aopt(x,y). The
initial phase values are �σ (t = 0) = 2π (σ − 1)/64 for σ =
1,2, i.e., the initial phase difference is |�1(t = 0) − �2(t =
0)| � 10−1. The results of direct numerical simulations are
averaged over 100 samples for different noise realizations.
The simulation results quantitatively agree with the theory.

Figure 10 shows the global stability of the common-
noise-induced synchronization of oscillatory convection for
the case of the optimal spatial pattern aopt(x,y); namely, it
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FIG. 9. (Color online) Comparison of the Lyapunov exponent for
the optimal spatial pattern aopt(x,y) with the common noise intensity
ε2 = 10−6 between direct numerical simulations (average) and the
theoretical curve (theory). The results of direct numerical simulations
are averaged over 100 samples, in which only 20 samples are shown
by thin (green) lines. The averaged result is shown only up to the time
when one of the phase differences in these 100 samples numerically
converges to zero. The initial phases are �σ (t = 0) = 2π (σ − 1)/64
for σ = 1,2, i.e., the initial phase difference is |�1(t = 0) −
�2(t = 0)| � 10−1.

shows that the synchronization is eventually achieved from
arbitrary initial phase differences, i.e., |�1(t = 0) − �σ (t =
0)| ∈ [0,π ]. Although the Lyapunov exponent � based on
the linearization of Eq. (42) quantifies only the local stability
of a small phase difference, as long as the phase reduction
approximation is valid, this global stability holds true for
any spatial pattern a(x,y) with a nonzero Lyapunov exponent,
namely, the Lyapunov exponent is negative, � < 0, as found
from Eq. (43). The global stability can be proved by the theory
developed in Ref. [8], i.e., by analyzing the Fokker-Planck
equation equivalent to the Langevin-type phase equation (42);
in addition, the effect of the independent noise can also be
included.

V. CONCLUDING REMARKS

Our investigations in this paper are summarized as fol-
lows. In Sec. II, we briefly reviewed our phase description

method for oscillatory convection in the Hele-Shaw cell with
consideration of its application to common-noise-induced
synchronization. In Sec. III, we analytically investigated
common-noise-induced synchronization of oscillatory con-
vection using the phase description method. In particular,
we theoretically determined the optimal spatial pattern of the
common noise for the oscillatory Hele-Shaw convection. In
Sec. IV, we numerically investigated common-noise-induced
synchronization of oscillatory convection; the direct numerical
simulation successfully confirmed the theoretical predictions.

The key quantity of the theory developed in this paper is
the phase sensitivity function Z(x,y,�). Thus, we describe an
experimental procedure to obtain the phase sensitivity function
Z(x,y,�). As in Eq. (45), the phase sensitivity function
Z(x,y,�) can be decomposed into the spectral components
Zjk(�), which are the effective phase sensitivity functions
for the single-mode spatial patterns a(j,k)(x,y) as shown in
Eq. (72). In a manner similar to the direct numerical simula-
tions yielding Fig. 6, the effective phase sensitivity function
Zjk(�) for each single-mode spatial pattern a(j,k)(x,y) can
also be experimentally measured. Therefore, in general, the
phase sensitivity function Z(x,y,�) can be constructed from a
sufficiently large set of such Zjk(�). Once the phase sensitivity
function Z(x,y,�) is obtained, the optimization method for
common-noise-induced synchronization can also be applied
in experiments.

Finally, we remark that not only the phase description
method for spatiotemporal rhythms but also the optimiza-
tion method for common-noise-induced synchronization have
broad applicability; these methods are not restricted to the
oscillatory Hele-Shaw convection analyzed in this paper. For
example, the combination of these methods can be applied to
common-noise-induced phase synchronization of spatiotem-
poral rhythms in reaction-diffusion systems of excitable and/or
heterogeneous media. Furthermore, as mentioned above, also
in experimental systems, such as the photosensitive Belousov-
Zhabotinsky reaction [28] and the liquid crystal spatial light
modulator [31], the optimization method for common-noise-
induced synchronization could be applied.

ACKNOWLEDGMENTS

Y.K. is grateful to members of both the Earth Evolution
Modeling Research Team and the Nonlinear Dynamics and its

0  

π / 4

π / 2

3π / 4

π  

0 100 200 300

| Θ
1 −

 Θ
σ 
|

(a)

[optimal] t

0.006
0.008
0.010
0.012
0.014
0.016
0.018
0.020
0.022

 0.00  0.01  0.02  0.03

H 2
2(

t)

(b1)

[optimal] t

0.006
0.008
0.010
0.012
0.014
0.016
0.018
0.020
0.022

200.00 200.01 200.02 200.03

H 2
2(

t)

(b2)

t

FIG. 10. (Color online) Global stability for the optimal spatial pattern aopt(x,y) with the common noise intensity ε2 = 10−6. The initial
phases are �σ (t = 0) = 2π (σ − 1)/12 for σ = 1, . . . ,12. (a) Time evolution of phase differences |�1 − �σ |. (b1), (b2) Time evolution of
H

(σ )
22 (t).

012912-11



YOJI KAWAMURA AND HIROYA NAKAO PHYSICAL REVIEW E 89, 012912 (2014)

Application Research Team at IFREE/JAMSTEC for fruitful
comments. Y.K. is also grateful for financial support by
JSPS KAKENHI Grant No. 25800222. H.N. is grateful for

financial support by JSPS KAKENHI Grants No. 25540108
and No. 22684020, CREST Kokubu project of JST, and FIRST
Aihara project of JSPS.

[1] A. T. Winfree, The Geometry of Biological Time (Springer,
New York, 1980); 2nd. ed. (Springer, New York, 2001).

[2] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence
(Springer, New York, 1984); (Dover, New York, 2003).

[3] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchroniza-
tion: A Universal Concept in Nonlinear Sciences (Cambridge
University Press, Cambridge, 2001).

[4] S. H. Strogatz, Sync: How Order Emerges from Chaos in the
Universe, Nature, and Daily Life (Hyperion Books, New York,
2003).

[5] S. C. Manrubia, A. S. Mikhailov, and D. H. Zanette, Emergence
of Dynamical Order: Synchronization Phenomena in Complex
Systems (World Scientific, Singapore, 2004).

[6] J. N. Teramae and D. Tanaka, Phys. Rev. Lett. 93, 204103 (2004).
[7] D. S. Goldobin and A. Pikovsky, Physica A 351, 126 (2005).
[8] H. Nakao, K. Arai, and Y. Kawamura, Phys. Rev. Lett. 98,

184101 (2007).
[9] W. Kurebayashi, K. Fujiwara, and T. Ikeguchi, Europhys. Lett.

97, 50009 (2012).
[10] F. C. Hoppensteadt and E. M. Izhikevich, Weakly Connected

Neural Networks (Springer, New York, 1997).
[11] E. M. Izhikevich, Dynamical Systems in Neuroscience: The

Geometry of Excitability and Bursting (MIT Press, Cambridge,
MA, 2007).

[12] G. B. Ermentrout and D. H. Terman, Mathematical Foundations
of Neuroscience (Springer, New York, 2010).

[13] G. B. Ermentrout, Neural Comput. 8, 979 (1996).
[14] E. Brown, J. Moehlis, and P. Holmes, Neural Comput. 16, 673

(2004).
[15] J. Moehlis, E. Shea-Brown, and H. Rabitz, J. Comput. Nonlin.

Dyn. 1, 358 (2006).
[16] T. Harada, H.-A. Tanaka, M. J. Hankins, and I. Z. Kiss,

Phys. Rev. Lett. 105, 088301 (2010).
[17] I. Dasanayake and J.-S. Li, Phys. Rev. E 83, 061916 (2011).
[18] A. Zlotnik and J.-S. Li, J. Neural Eng. 9, 046015 (2012).
[19] A. Zlotnik, Y. Chen, I. Z. Kiss, H.-A. Tanaka, and J.-S. Li,

Phys. Rev. Lett. 111, 024102 (2013).
[20] S. Marella and G. B. Ermentrout, Phys. Rev. E 77, 041918

(2008).
[21] A. Abouzeid and B. Ermentrout, Phys. Rev. E 80, 011911 (2009).
[22] S. Hata, K. Arai, R. F. Galán, and H. Nakao, Phys. Rev. E 84,

016229 (2011).
[23] A. S. Mikhailov and K. Showalter, Phys. Rep. 425, 79 (2006).
[24] Engineering of Chemical Complexity, edited by A. S. Mikhailov

and G. Ertl (World Scientific, Singapore, 2013).
[25] P. Manneville, Dissipative Structures and Weak Turbulence

(Academic Press, New York, 1990).
[26] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851

(1993).
[27] M. C. Cross and H. Greenside, Pattern Formation and Dynam-

ics in Nonequilibrium Systems (Cambridge University Press,
Cambridge, 2009).

[28] M. Hildebrand, J. Cui, E. Mihaliuk, J. Wang, and K. Showalter,
Phys. Rev. E 68, 026205 (2003).

[29] F. J. R. Eccles, P. L. Read, A. A. Castrejón-Pita, and T. W. N.
Haine, Phys. Rev. E 79, 015202(R) (2009).

[30] A. A. Castrejón-Pita and P. L. Read, Phys. Rev. Lett. 104, 204501
(2010).

[31] E. A. Rogers, R. Kalra, R. D. Schroll, A. Uchida, D. P. Lathrop,
and R. Roy, Phys. Rev. Lett. 93, 084101 (2004).

[32] A. Bernardini, J. Bragard, and H. Mancini, Math. Biosci. Eng. 1,
339 (2004); A. Bernardini, Ph.D. thesis, University of Navarra,
2005.

[33] D. A. Nield and A. Bejan, Convection in Porous Media, 3rd ed.
(Springer, New York, 2006).

[34] Y. Kawamura and H. Nakao, Chaos 23, 043129 (2013).
[35] Y. Kawamura, H. Nakao, and Y. Kuramoto, Phys. Rev. E 84,

046211 (2011).
[36] H. Nakao, T. Yanagita, and Y. Kawamura, Procedia IUTAM 5,

227 (2012).
[37] Y. Kawamura, H. Nakao, K. Arai, H. Kori, and Y. Kuramoto,

Phys. Rev. Lett. 101, 024101 (2008).
[38] Y. Kawamura, H. Nakao, K. Arai, H. Kori, and Y. Kuramoto,

Chaos 20, 043109 (2010).
[39] H. Risken, The Fokker-Planck Equation: Methods of Solution

and Applications (Springer, New York, 1989).
[40] C. W. Gardiner, Handbook of Stochastic Methods: For Physics,

Chemistry and the Natural Sciences (Springer, New York, 1997).
[41] Precisely speaking, owing to the noise, the frequency of the

oscillatory convection given in Eq. (42) can be slightly different
from the natural frequency given in Eq. (14); however, this point
is not essential in this paper because Eq. (43) is independent
of the value of the frequency. The theory of stochastic phase
reduction for ordinary limit-cycle oscillators has been inten-
sively investigated in Refs. [47–50], but extensions to partial
differential equations have not been developed yet.

[42] Practically speaking, e.g., in numerical simulations, infinite se-
ries are truncated at some sufficiently large finite number. From
a theoretical point of view, such a truncation approximation
is valid because this system includes dissipation due to the
Laplacian.

[43] I. T. Jolliffe, Principal Component Analysis, 2nd ed. (Springer,
New York, 2002).

[44] We applied the pseudospectral method, which is composed
of a sine expansion with 128 modes for the Dirichlet zero
boundary condition and a cosine expansion with 128 modes
for the Neumann zero boundary condition. The fourth-order
Runge-Kutta method with integrating factor using a time step
�t = 10−4 ∼ 10−6 (mainly, �t = 10−4) and the Heun method
with integrating factor using a time step �t = 10−5 were applied
for the deterministic and stochastic (Langevin-type) equations,
respectively.

[45] When the impulsive perturbation is sufficiently weak, the
phase response curve depends linearly on the impulse

012912-12

http://dx.doi.org/10.1103/PhysRevLett.93.204103
http://dx.doi.org/10.1103/PhysRevLett.93.204103
http://dx.doi.org/10.1103/PhysRevLett.93.204103
http://dx.doi.org/10.1103/PhysRevLett.93.204103
http://dx.doi.org/10.1016/j.physa.2004.12.014
http://dx.doi.org/10.1016/j.physa.2004.12.014
http://dx.doi.org/10.1016/j.physa.2004.12.014
http://dx.doi.org/10.1016/j.physa.2004.12.014
http://dx.doi.org/10.1103/PhysRevLett.98.184101
http://dx.doi.org/10.1103/PhysRevLett.98.184101
http://dx.doi.org/10.1103/PhysRevLett.98.184101
http://dx.doi.org/10.1103/PhysRevLett.98.184101
http://dx.doi.org/10.1209/0295-5075/97/50009
http://dx.doi.org/10.1209/0295-5075/97/50009
http://dx.doi.org/10.1209/0295-5075/97/50009
http://dx.doi.org/10.1209/0295-5075/97/50009
http://dx.doi.org/10.1162/neco.1996.8.5.979
http://dx.doi.org/10.1162/neco.1996.8.5.979
http://dx.doi.org/10.1162/neco.1996.8.5.979
http://dx.doi.org/10.1162/neco.1996.8.5.979
http://dx.doi.org/10.1162/089976604322860668
http://dx.doi.org/10.1162/089976604322860668
http://dx.doi.org/10.1162/089976604322860668
http://dx.doi.org/10.1162/089976604322860668
http://dx.doi.org/10.1115/1.2338654
http://dx.doi.org/10.1115/1.2338654
http://dx.doi.org/10.1115/1.2338654
http://dx.doi.org/10.1115/1.2338654
http://dx.doi.org/10.1103/PhysRevLett.105.088301
http://dx.doi.org/10.1103/PhysRevLett.105.088301
http://dx.doi.org/10.1103/PhysRevLett.105.088301
http://dx.doi.org/10.1103/PhysRevLett.105.088301
http://dx.doi.org/10.1103/PhysRevE.83.061916
http://dx.doi.org/10.1103/PhysRevE.83.061916
http://dx.doi.org/10.1103/PhysRevE.83.061916
http://dx.doi.org/10.1103/PhysRevE.83.061916
http://dx.doi.org/10.1088/1741-2560/9/4/046015
http://dx.doi.org/10.1088/1741-2560/9/4/046015
http://dx.doi.org/10.1088/1741-2560/9/4/046015
http://dx.doi.org/10.1088/1741-2560/9/4/046015
http://dx.doi.org/10.1103/PhysRevLett.111.024102
http://dx.doi.org/10.1103/PhysRevLett.111.024102
http://dx.doi.org/10.1103/PhysRevLett.111.024102
http://dx.doi.org/10.1103/PhysRevLett.111.024102
http://dx.doi.org/10.1103/PhysRevE.77.041918
http://dx.doi.org/10.1103/PhysRevE.77.041918
http://dx.doi.org/10.1103/PhysRevE.77.041918
http://dx.doi.org/10.1103/PhysRevE.77.041918
http://dx.doi.org/10.1103/PhysRevE.80.011911
http://dx.doi.org/10.1103/PhysRevE.80.011911
http://dx.doi.org/10.1103/PhysRevE.80.011911
http://dx.doi.org/10.1103/PhysRevE.80.011911
http://dx.doi.org/10.1103/PhysRevE.84.016229
http://dx.doi.org/10.1103/PhysRevE.84.016229
http://dx.doi.org/10.1103/PhysRevE.84.016229
http://dx.doi.org/10.1103/PhysRevE.84.016229
http://dx.doi.org/10.1016/j.physrep.2005.11.003
http://dx.doi.org/10.1016/j.physrep.2005.11.003
http://dx.doi.org/10.1016/j.physrep.2005.11.003
http://dx.doi.org/10.1016/j.physrep.2005.11.003
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/RevModPhys.65.851
http://dx.doi.org/10.1103/PhysRevE.68.026205
http://dx.doi.org/10.1103/PhysRevE.68.026205
http://dx.doi.org/10.1103/PhysRevE.68.026205
http://dx.doi.org/10.1103/PhysRevE.68.026205
http://dx.doi.org/10.1103/PhysRevE.79.015202
http://dx.doi.org/10.1103/PhysRevE.79.015202
http://dx.doi.org/10.1103/PhysRevE.79.015202
http://dx.doi.org/10.1103/PhysRevE.79.015202
http://dx.doi.org/10.1103/PhysRevLett.104.204501
http://dx.doi.org/10.1103/PhysRevLett.104.204501
http://dx.doi.org/10.1103/PhysRevLett.104.204501
http://dx.doi.org/10.1103/PhysRevLett.104.204501
http://dx.doi.org/10.1103/PhysRevLett.93.084101
http://dx.doi.org/10.1103/PhysRevLett.93.084101
http://dx.doi.org/10.1103/PhysRevLett.93.084101
http://dx.doi.org/10.1103/PhysRevLett.93.084101
http://dx.doi.org/10.3934/mbe.2004.1.339
http://dx.doi.org/10.3934/mbe.2004.1.339
http://dx.doi.org/10.3934/mbe.2004.1.339
http://dx.doi.org/10.3934/mbe.2004.1.339
http://dx.doi.org/10.1063/1.4837775
http://dx.doi.org/10.1063/1.4837775
http://dx.doi.org/10.1063/1.4837775
http://dx.doi.org/10.1063/1.4837775
http://dx.doi.org/10.1103/PhysRevE.84.046211
http://dx.doi.org/10.1103/PhysRevE.84.046211
http://dx.doi.org/10.1103/PhysRevE.84.046211
http://dx.doi.org/10.1103/PhysRevE.84.046211
http://dx.doi.org/10.1016/j.piutam.2012.06.030
http://dx.doi.org/10.1016/j.piutam.2012.06.030
http://dx.doi.org/10.1016/j.piutam.2012.06.030
http://dx.doi.org/10.1016/j.piutam.2012.06.030
http://dx.doi.org/10.1103/PhysRevLett.101.024101
http://dx.doi.org/10.1103/PhysRevLett.101.024101
http://dx.doi.org/10.1103/PhysRevLett.101.024101
http://dx.doi.org/10.1103/PhysRevLett.101.024101
http://dx.doi.org/10.1063/1.3491344
http://dx.doi.org/10.1063/1.3491344
http://dx.doi.org/10.1063/1.3491344
http://dx.doi.org/10.1063/1.3491344


NOISE-INDUCED SYNCHRONIZATION OF OSCILLATORY . . . PHYSICAL REVIEW E 89, 012912 (2014)

intensity ε. Therefore, the phase response curve normal-
ized by the impulse intensity ε converges to the effective
phase sensitivity function ζ (�) as ε decreases. As shown in
Fig. 6(d), when the impulsive perturbation is not weak, the
dependence of the phase response curve on the impulse
intensity ε becomes nonlinear. In general, when the impulsive
perturbation is not weak, the phase response curve is not equal
to zero, even though the effective phase sensitivity function is
equal to zero, ζ (�) = 0. We also note that the linear dependence
region of the phase response curve on the impulse is generally
dependent on the spatial pattern a(x,y) of the impulse.

[46] Theoretically speaking, the phase differences shown in Fig. 7(d)
should be constant because the effective phase sensitiv-

ity function is equal to zero, ζ (�) = 0, for this case. As
shown in Fig. 7(d), when the perturbation is not sufficiently
weak, the phase response curve is not equal to zero; this
higher order effect causes the slight variations shown in
Fig. 7(d).

[47] K. Yoshimura and K. Arai, Phys. Rev. Lett. 101, 154101
(2008).

[48] J. N. Teramae, H. Nakao, and G. B. Ermentrout, Phys. Rev. Lett.
102, 194102 (2009).

[49] H. Nakao, J. N. Teramae, D. S. Goldobin, and Y. Kuramoto,
Chaos 20, 033126 (2010).

[50] D. S. Goldobin, J. N. Teramae, H. Nakao, and G. B. Ermentrout,
Phys. Rev. Lett. 105, 154101 (2010).

012912-13

http://dx.doi.org/10.1103/PhysRevLett.101.154101
http://dx.doi.org/10.1103/PhysRevLett.101.154101
http://dx.doi.org/10.1103/PhysRevLett.101.154101
http://dx.doi.org/10.1103/PhysRevLett.101.154101
http://dx.doi.org/10.1103/PhysRevLett.102.194102
http://dx.doi.org/10.1103/PhysRevLett.102.194102
http://dx.doi.org/10.1103/PhysRevLett.102.194102
http://dx.doi.org/10.1103/PhysRevLett.102.194102
http://dx.doi.org/10.1063/1.3488977
http://dx.doi.org/10.1063/1.3488977
http://dx.doi.org/10.1063/1.3488977
http://dx.doi.org/10.1063/1.3488977
http://dx.doi.org/10.1103/PhysRevLett.105.154101
http://dx.doi.org/10.1103/PhysRevLett.105.154101
http://dx.doi.org/10.1103/PhysRevLett.105.154101
http://dx.doi.org/10.1103/PhysRevLett.105.154101



