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Optimal entrainment of a quantum nonlinear oscillator to a periodically modulated weak harmonic drive is
studied in the semiclassical regime. By using the semiclassical phase-reduction theory recently developed for
quantum nonlinear oscillators [Y. Kato, N. Yamamoto, and H. Nakao, Phys. Rev. Res. 1, 033012 (2019)], two
types of optimization problems, one for the stability and the other for the phase coherence of the entrained state,
are considered. The optimal waveforms of the periodic amplitude modulation can be derived by applying the
classical optimization methods to the semiclassical phase equation that approximately describes the quantum
limit-cycle dynamics. Using a quantum van der Pol oscillator with squeezing and Kerr effects as an example,
the performance of optimization is numerically analyzed. It is shown that the optimized waveform for the
entrainment stability yields faster entrainment to the driving signal than the case with a simple sinusoidal
waveform, while that for the phase coherence yields little improvement from the sinusoidal case. These results
are explained from the properties of the phase sensitivity function.
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I. INTRODUCTION

Synchronization of rhythmic nonlinear systems are widely
observed all over the real world, including laser oscillations,
mechanical vibrations, and calling frogs [1–6]. It often plays
important functional roles in biological or artificial systems,
such as cardiac resynchronization [7], phase-locked loops
in electrical circuits [8], and synchronous power generators
[9,10].

Recently, experimental studies of synchronization have
been performed in micro- and nanoscale nonlinear oscillators
[11–16] and theoretical studies of synchronization in the
quantum regime have predicted novel features of quantum
synchronization [17–33]. In particular, experimental realiza-
tion of quantum synchronization is expected in optomechan-
ical oscillators [13,17–19], oscillators consisting of cooled
atomic ensembles [15,16,20,21], and superconducting devices
[30]. Once realized, quantum synchronization may be applica-
ble in quantum metrology, e.g., improvement of the accuracy
of measurements in Ramsey spectroscopy for atomic clocks
[21].

Nonlinear oscillators possessing a stable limit cycle can be
analyzed by using the phase-reduction theory [3,4,6] when
the forcing given to the oscillator is sufficiently weak. In
the phase-reduction theory, multidimensional nonlinear dy-
namical equations describing a limit-cycle oscillator under
weak forcing are approximately reduced to a simple one-
dimensional phase equation, characterized only by the nat-
ural frequency and phase sensitivity function (PSF) of the
oscillator. The reduced phase equation enables us to system-
atically analyze universal dynamical properties of limit-cycle
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oscillators, such as the entrainment of an oscillator to a weak
periodic forcing or mutual synchronization of weakly coupled
oscillators.

The phase-reduction theory has also been used in control
and optimization of nonlinear oscillators [34]. For example,
using the reduced phase equations, minimization of control
power for an oscillator [35,36], maximization of the phase-
locking range of an oscillator [37], maximization of linear sta-
bility of an oscillator entrained to a periodic forcing [38] and
of mutual synchronization between two coupled oscillators
[39,40], maximization of phase coherence of noisy oscillators
[41], and phase-selective entrainment of oscillators [42] have
been studied.

Similarly to classical nonlinear oscillators, quantum non-
linear oscillators in the semiclassical regime can also be
analyzed by using the phase equation. In Ref. [43], Hamerly
and Mabuchi derived a phase equation from the stochastic
differential equation (SDE) describing a truncated Wigner
function of a quantum limit-cycle oscillator in a free-carrier
cavity. In Ref. [44], we further developed a phase-reduction
framework that is applicable to general single-mode quantum
nonlinear oscillators.

In this paper, using the semiclassical phase-reduction the-
ory [44], we optimize entrainment of a quantum nonlinear
oscillator to a weak harmonic drive with periodic modulation
in the semiclassical regime by employing the optimization
methods originally developed for classical oscillators (see
Fig. 1 for a schematic diagram). Specifically, we consider
two types of optimization problems, i.e., (i) improving en-
trainment stability [38] and (ii) enhancing phase coherence
[41] of the oscillator. By using the quantum van der Pol
(vdP) oscillator with squeezing and Kerr effects as an ex-
ample, we illustrate the results of optimization by numerical
simulations.
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FIG. 1. A schematic diagram showing optimization of entrain-
ment of a quantum limit-cycle oscillator subjected to a periodically
modulated harmonic drive. In the semiclassical regime, the oscillator
can be described by a one-dimensional phase equation. Using the
reduced phase equation, we can formulate optimization problems and
solve them to derive the optimal waveforms of the periodic amplitude
modulation of the harmonic drive.

We show that, for the vdP oscillator used in the example,
the optimal waveform for the problem (i) leads to larger
stability and faster entrainment than the case with the simple
sinusoidal waveform, while the optimal waveform for the
problem (ii) provides only tiny enhancement of phase co-
herence from the sinusoidal case. We discuss the difference
between the two optimization problems from the properties of
the PSF.

This paper is organized as follows. In Sec. II, we derive a
semiclassical phase equation for a weakly perturbed quantum
nonlinear oscillator and derive the optimal waveforms for
entrainment. In Sec. III, we illustrate the results of the two
optimization methods by numerical simulations and discuss
their difference. Section IV gives discussion and the Appendix
gives details of the calculations.

II. THEORY

A. Master equation

We consider a quantum dissipative system with a single de-
gree of freedom, which is interacting with linear and nonlinear
reservoirs and has a stable limit-cycle solution in the classical
limit. The system is subjected to a weak harmonic drive with
a periodic amplitude modulation of an arbitrary waveform.
Under the Markovian approximation of the reservoirs, the
system obeys a quantum master equation [45,46],

ρ̇ = −i[H − iεE (ωet )(a − a†), ρ] +
n∑

m=1

D[Lm]ρ, (1)

in the rotating coordinate frame of the harmonic drive, where
ρ is a density matrix representing the system state; H is a
system Hamiltonian; a and a† denote annihilation and cre-
ation operators († represents Hermitian conjugate), respec-
tively; E (ωet ) is a 2π -periodic scalar function representing
the periodic amplitude modulation with frequency ωe; ε is
a tiny parameter (0 < ε � 1) characterizing weakness of
the harmonic drive; n is the number of reservoirs; Lm is
the coupling operator between the system and mth reservoir

(m = 1, . . . , n); D[L]ρ = LρL† − (ρL†L + L†Lρ)/2 denotes
the Lindblad form; and the Planck constant is set as h̄ = 1. It is
assumed that the modulation frequency ωe is sufficiently close
to the natural frequency ω of the limit cycle in the classical
limit.

Using the P representation [45,46], a Fokker-Planck equa-
tion (FPE) equivalent to Eq. (1) can be derived as

∂P(α, t )

∂t
=

⎡
⎣−

2∑
j=1

∂ j{Aj (α) + εE (ωet )}

+1

2

2∑
j=1

2∑
k=1

∂ j∂k{εDjk (α)}
⎤
⎦P(α, t ), (2)

where α = (α, α∗)T ∈ C2×1 is a two-dimensional complex
vector with α ∈ C (∗ represents complex conjugate and T
represents transpose), P(α) is the P distribution of α, Aj (α)
is the jth components of a complex vector A(α) = (A1(α),
A∗

1(α))T ∈ C2×1[A2(α) = A∗
1(α)] representing the system dy-

namics, εDjk (α) is a ( j, k) component of a symmetric diffu-
sion matrix εD(α) ∈ C2×2 representing quantum fluctuations,
and the complex partial derivatives are defined as ∂1 = ∂/∂α

and ∂2 = ∂/∂α∗. The drift term A(α) and the diffusion matrix
εD(α) can be calculated from the master equation (1) by using
the standard operator correspondence for the P representation
[45,46]. The weak harmonic drive with a periodic modulation
εE (ωet ) and the diffusion matrix εD(α) are assumed to be of
the same order, O(ε).

Introducing a complex matrix
√

εβ(α) ∈ C2×2 satisfying
εD(α) = √

εβ(α)[
√

εβ(α)]T , the Ito SDE corresponding to
Eq. (2) for the phase-space variable α(t ) is obtained as

dα(t ) = {A[α(t )] + εE (ωet )(1, 1)T}dt + √
εβ[α(t )]dW (t ),

(3)

where W = (W1,W2)T ∈ R2×1 is a vector of independent
Wiener processes Wi(i = 1, 2) satisfying E[dWidWj] = δi jdt
and the explicit form of β(α) is given by

β(α)=

⎛
⎜⎝

√
[R12(α)+R11(α)]

2 eiχ (α)/2 −i
√

[R12(α)−R11(α)]
2 eiχ (α)/2√

[R12(α)+R11(α)]
2 e−iχ (α)/2 i

√
[R12(α)−R11(α)]

2 e−iχ (α)/2

⎞
⎟⎠

(4)

where R11(α)eiχ (α) = D11(α) and R12(α) = D12(α) [44]. In
what follows, we only consider the case in which the diffusion
matrix is always positive semidefinite along the limit cycle
in the classical limit and derive the phase equation in the
two-dimensional phase space of the classical variables [44].

B. Phase equation and averaging

As discussed in our previous study [44], we can derive an
approximate SDE for the phase variable of the system from
the SDE (3) in the P representation. We define a real vector
X = (x, p)T = (Re α, Im α)T ∈ R2×1 from the complex vec-
tor α. Then the real-valued expression of Eq. (3) for X is given
by an Ito SDE,

dX (t )={F[X (t )] + εE (ωet )(1, 0)T}dt + √
εG[X (t )]dW (t ),

(5)
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where F(X ) ∈ R2×1 and G(X ) ∈ R2×2 are real-valued rep-
resentations of the system dynamics A(α) ∈ C2×1 and noise
intensity β(α) ∈ C2×2 of Eq. (3), respectively.

We assume that the system in the classical limit with-
out perturbation and quantum noise, i.e., Ẋ = F(X ), has an
exponentially stable limit-cycle solution X 0(t ) = X 0(t + T )
with a natural period T and frequency ω = 2π/T . Following
the standard method in the classical phase-reduction theory
[2–6], we can introduce an asymptotic phase function 
(X ) :
R2×1 → [0, 2π ) such that ∇
(X ) · F(X ) = ω is satisfied in
the basin of the limit cycle, where ∇
(X ) ∈ R2×1 is the gra-
dient of 
(X ) [3,6]. The phase of a system state X is defined
as φ = 
(X ), which satisfies φ̇ = 
̇(X ) = F(X ) · ∇
(X ) =
ω (· represents a scalar product between two vectors). We
represent the system state X on the limit cycle as X 0(φ) as a
function of the phase φ. Note that an identity 
(X 0(φ)) = φ

is satisfied by the definition of 
(X ).
Since we assume that the quantum noise and perturbations

are sufficiently weak and the deviation of the state X (t ) from
the limit cycle is small, at the lowest-order approximation, we
can approximate X (t ) by X 0[φ(t )] and derive an Ito SDE for
the phase φ as

dφ = {ω + εZ(φ) · E (ωet )(1, 0)T + εg(φ)}dt

+ √
ε{G(φ)TZ(φ)} · dW . (6)

Here we introduced the PSF Z(φ) = ∇
|X=X 0(φ) ∈ R2×1

characterizing linear response of the oscillator phase to weak
perturbations, a noise intensity matrix G(φ) = G[X 0(φ)],
and a function g(φ) = 1

2 Tr{G(φ)TY (φ)G(φ)}, where Y (φ) =
∇T∇
|X=X 0(φ) ∈ R2×2 is a Hessian matrix of the phase func-
tion 
(X ) at X = X 0(φ) on the limit cycle. The PSF [5] and
Hessian [47] can be numerically obtained as 2π -periodic so-
lutions to adjoint-type equations with appropriate constraints.
See Ref. [44] for details.

To formulate the optimization problem, we further derive
an averaged phase equation from the semiclassical phase
equation (6). We introduce a phase difference ψ = φ − ωet
between the oscillator and periodic modulation, which is a
slow variable obeying

dψ = ε{e + Zx(ψ + ωet )E (ωet ) + g(ψ + ωet )}dt

+ √
ε{G(ψ + ωet )TZ(ψ + ωet )} · dW , (7)

where εe = ω − ωe and Zx is the x component of the PSF.
Following the standard averaging procedure [3], the small
right-hand side of this equation can be averaged over one
period of oscillation via the corresponding FPE [44], yielding
an averaged phase equation,

dψ = ε{̃e + �(ψ )}dt + √
εD0 · dW , (8)

which is correct up to O(ε). Here �(ψ ) is the phase-coupling
function defined as

�(ψ ) = 〈Zx(ψ + θ )E (θ )〉θ , (9)

̃e = e + 〈g(θ )〉θ = ω + 〈g(θ )〉θ − ωe = ω̃ − ωe is the ef-
fective detuning of the oscillator frequency from the periodic
modulation (ω̃ := ω + 〈g(θ )〉θ is the effective frequency of
the oscillator), D0 = 〈G(θ )TZ(θ )〉θ , and the one-period aver-
age is denoted as 〈·〉θ = 1

2π

∫ 2π

0 (·)dθ .

If the deterministic part of Eq. (8) has a stable fixed point
at ψ∗, then the phase of the oscillator can be locked to the pe-
riodic amplitude modulation, namely the phase difference ψ

between the oscillator and periodic modulation stays around
ψ∗ as long as the quantum noise is sufficiently weak. We
consider optimization of the waveform E of the periodic
amplitude modulation for (i) improving entrainment stability
and (ii) enhancing phase coherence of the oscillator. For the
simplicity of the problem, we assume ̃ = 0, that is, the
frequency of the periodic amplitude modulation is identical
with the effective frequency of the system, ωe = ω̃.

C. Improvement of entrainment stability

First, we apply the optimization method of the waveform
for stable entrainment, formulated by Zlotnik et al. [38] for
classical limit-cycle oscillators, to the semiclassical phase
equation describing a quantum oscillator. The entrainment
stability is characterized by the linear stability of the phase-
locking point ψ∗ in the classical limit without noise, which
is given by the slope −�′(ψ∗). The optimization problem is
defined as follows:

maximize − �′(0), s.t. 〈E2(θ )〉θ = P. (10)

Here we assume that the phase locking to the periodic mod-
ulation occurs at the phase difference ψ∗ = 0 without losing
generality by shifting the origin of the phase.

The solution to this problem maximizes the linear stability
−�′(0) of the fixed point ψ∗ = 0 of the deterministic part
of Eq. (8). Maximization of the linear stability minimizes
the convergence time to the fixed point, resulting in faster
entrainment of the oscillator to the driving signal when the
noise is absent. This problem is solved under the condition
that the control power 〈E2(θ )〉θ is fixed to P, where P is
assumed to be sufficiently small. As derived in Appendix, the
optimal waveform for Eq. (10) is explicitly given by

E (θ ) = −
√

P

〈Z ′
x(θ )2〉θ Z ′

x(θ ), (11)

which is proportional to the differential of the x component
Zx(θ ) of the PSF.

D. Enhancement of phase coherence

Next we apply the optimization method of the waveform
for enhancement of phase coherence in the weak-noise limit,
which was formulated by Pikovsky [41] for classical noisy
limit-cycle oscillators, to the semiclassical phase equation
describing a quantum oscillator. In the weak-noise limit, the
phase coherence is characterized by the depth v(ψmax) −
v(ψ∗) of the potential v(ψ ) = ∫ ψ {−�(θ )}dθ of the determin-
istic part of Eq. (8), where ψmax and ψ∗ give the maximum
and minimum of the potential v(ψ ), respectively (we assume
that ψ∗ corresponds to the potential minimum, i.e., we focus
on the most stable fixed point if there are multiple stable fixed
points). In this case, the optimization problem is defined as
follows:

maximize
∫ ψmax

ψ∗
{−�(ψ )}dψ, s.t. 〈E2(θ )〉θ = P. (12)
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The solution to this optimization problem maximizes the
depth of the potential v(ψ ) at the phase-locked point, thereby
minimizing the escape rate of noise-induced phase slipping
and maximizing the phase coherence of the oscillator under
sufficiently weak noise, as discussed in Ref. [41] for the
classical case. As in the previous problem, this optimization
problem is solved under the condition that the control power
〈E2(θ )〉θ is fixed to P.

In what follows, we introduce ψ = ψmax − ψ∗ and as-
sume ψ∗ = 0 without loss of generality. Then, the optimal
waveform is obtained as (see Appendix for the derivation)

E (θ ) = −
√

P〈[ ∫ θ+ψ

θ
Zx(φ)dφ

]2〉
θ

∫ θ+ψ

θ

Zx(φ)dφ, (13)

which is proportional to the integral of the x component Zx(φ)
of the PSF, in contrast to the previous case in which the
optimal waveform is proportional to the differential of Zx(φ).

III. RESULTS

A. Quantum van der Pol oscillator

As an example, we consider a quantum vdP oscillator
with squeezing and Kerr effects subjected to a periodically
modulated harmonic drive. In our previous study [44], we
have analyzed entrainment of a vdP oscillator with only a
squeezing effect to a purely sinusoidal periodic modulation;
in this study, we seek optimal waveforms of the periodic
modulation for a vdP oscillator with both squeezing and Kerr
effects. We use QuTiP numerical toolbox for direct numerical
simulations of the master equation [48].

We assume that the harmonic drive is sufficiently weak
and treat it as a perturbation, while the squeezing and Kerr
effects are both relatively strong and cannot be treated as
perturbations. The frequencies of the oscillator, harmonic
drive, and pump beam of squeezing are denoted by ω0, ωd , and
ωsq, respectively. We consider the case in which the squeezing
is generated by a degenerate parametric amplifier and we set
ωsq = 2ωd .

In the rotating coordinate frame of frequency ωd , the
master equation for the quantum vdP oscillator is given by
[31,44]

ρ̇ = − i[−a†a + Ka†2a2 − iE (ωet )(a − a†)

+ iη(a2e−iθ − a†2eiθ ), ρ] + γ1D[a†]ρ + γ2D[a2]ρ,

(14)

where  = ωd − ω0 is the frequency detuning of the har-
monic drive from the oscillator, K is the Kerr parameter,
E (ωet ) is the periodic amplitude modulation of the harmonic
drive, ηeiθ is the squeezing parameter, γ1 and γ2 are the
decay rates for negative damping and nonlinear damping,
respectively.

We assume γ2 to be sufficiently small, for which the
semiclassical approximation is valid, and represent γ2 as
γ2 = εγ1γ

′
2 with a dimensionless parameter γ ′

2 of O(1).
As discussed in Ref. [44], to rescale the size of the
limit cycle to be O(1), we introduce a rescaled annihila-
tion operator a′, classical variable α′, and rescaled param-
eters  = γ1

′, K = εγ1K ′, E (ωet ) = √
εγ1E ′(ωet ), η =

γ1η
′, where ′, K ′, E ′, η′ are dimensionless parameters of

O(1). We also rescale the time and frequency of the peri-
odic modulation as t ′ = γ1t and ωe = γ1ω

′
e, respectively. The

FPE for the P distribution corresponding to Eq. (14) is then
given by

∂P(α′, t ′)
∂t ′ =

⎡
⎣−

2∑
j=1

∂ ′
j{Aj (α

′) + εE ′(ω′
et

′)}

+1

2

2∑
j=1

2∑
k=1

∂ ′
j∂

′
k{εDjk (α′)}

⎤
⎦P(α′, t ′), (15)

where α′ = (α′, α′∗) = √
ε(α, α∗), ∂ ′

1 = ∂/∂α′, ∂ ′
2 = ∂/∂α′∗,

A(α′) =
[ (

1
2 + i′)α′ − (γ ′

2 + 2K ′i)α′∗α′2 − 2η′eiθα′∗(
1
2 − i′)α′∗ − (γ ′

2 − 2K ′i)α′α′∗2 − 2η′e−iθα′

]

(16)

and

D(α′) =
{−[(γ ′

2 + 2K ′i)α′2 + 2η′eiθ ] 1
1 −[(γ ′

2 − 2K ′i)α′∗2 + 2η′e−iθ ]

}
. (17)

The real-valued vector X = (x′, p′)T = (Re α′, Im α′)T of Eq. (5) after rescaling is

dX =
[

1
2 x′ − ′ p′ − (γ ′

2x′ − 2K ′ p′)(x′2 + p′2) + εE ′(ω′
et

′) − 2η′(x′ cos θ + p′ sin θ )
1
2 p′ + ′x′ − (γ ′

2 p′ + 2K ′x′)(x′2 + p′2) + 2η′(p′ cos θ − x′ sin θ )

]
dt + √

εG(X )dW ′, (18)

where dW ′ = √
γ1dW and the noise intensity matrix is ex-

plicitly given by

G(X ) =
⎡
⎣

√
(1+R′

1 )
2 cos χ ′

1
2

√
(1−R′

1 )
2 sin χ ′

1
2√

(1+R′
1 )

2 sin χ ′
1

2 −
√

(1−R′
1 )

2 cos χ ′
1

2

⎤
⎦ (19)

with R′
1eiχ ′

1 = −[(γ ′
2 + 2K ′i)α′2 + 2η′eiθ ]. The deterministic

part of Eq. (18) without the harmonic drive (E ′ = 0) gives

an asymmetric limit cycle when η′ > 0 and cannot be solved
analytically. Hence, we numerically obtain the limit cycle
X 0(φ) and evaluate the PSF Z(φ), Hessian matrix Y (φ), and
noise intensity G(φ). We then use these quantities to derive
the optimal waveforms.

We consider two parameter sets, which correspond to (i)
a limit cycle with asymmetry due to the effect of squeezing,
(, γ2, ηeiθ , K )/γ1 = (0.575, 0.05, 0.2, 0), and (ii) a limit
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FIG. 2. Limit cycles and phase sensitivity functions of a quantum
van der Pol oscillator with only the squeezing effect [(1a), (1b),
and (1c)] and with both squeezing and Kerr effects [(2a), (2b), and
(2c)]. [(1a) and (2a)] Limit cycle X 0(φ) in the classical limit. [(1b)
and (2b)] x component Zx (φ) of the PSF Z(φ). [(1c) and (2c)] p
component Zp(φ) of the PSF Z(φ). Note that the figures are drawn
using x and p before rescaling.

cycle with asymmetry due to squeezing and Kerr effects,
(, γ2, ηeiθ , K )/γ1 = (0, 0.05, 0.15, 0.03). Note that we use
parameter sets for which the limit cycles in the classical limits
are asymmetric for the evaluation of the optimization meth-
ods. This is because the optimal waveform is given by a trivial
sinusoidal function when the limit cycle is symmetric and the
x component of the PSF has a sinusoidal form (see Appendix).
We set the control power as P = √

0.2 and compare the results
for optimal waveforms with those for the simple sinusoidal
waveform.

Figures 2(1a)–2(1c) and Figs. 2(2a)–2(2c) show the limit
cycles and PSFs in the classical limit for cases (i) and (ii),
respectively. The natural and effective frequencies of the
oscillator are (ω, ω̃) = (0.413, 0.407) in case (i) and (ω, ω̃) =
(0.510, 0.451) in case (ii), respectively. In case (i), the drift
coefficient of the phase variable is positive when the oscillator
rotates counterclockwise and the origin of the phase φ = 0 is
chosen as the intersection of the limit cycle and the x′ axis with
x′ > 0. In case (ii), the drift coefficient of the phase variable is
positive when the oscillator rotates clockwise and the origin
of the phase φ = 0 is chosen as the intersection of the limit
cycle and the x′ axis with x′ < 0.

B. Improvement of entrainment stability

To evaluate the performance of the optimal waveform
for the entrainment stability, we use half the square of the
Bures distance Fq(ρ1, ρ2) = 1 − Tr [

√√
ρ2ρ1

√
ρ2] obtained

by direct numerical simulations of the master equation (14)
and the corresponding classical distance Fc(P1(ψ ), P2(ψ )) =
1 − 〈√P1(ψ )P2(ψ )〉ψ for the probability distributions of the

phase variable [49] obtained from the reduced phase equation
(6). We consider the distance between the system states at t
and t + Te with Te = 2π/ωe (i.e., one period later) and use
Fq(ρt , ρt+Te ) and Fc(Pt (ψ ), Pt+Te (ψ )) to measure the perfor-
mance, since Fq(ρt , ρt+Te ) and Fc(Pt (ψ ), Pt+Te (ψ )) converge
to zero when the system converges to a periodic steady
(cyclostationary) state with period Te.

To eliminate the dependence on the initial phase θ0 of the
input, we calculate F θ0

c,q by using an input signal E (ωet + θ0),
average it over 0 � θ0 < 2π to obtain 〈F θ0

c,q〉θ0
, and use this as

the measure for evaluating the entrainment of the oscillator.
We set the initial state of the density matrix as the steady
state of Eq. (14) without the periodically modulated harmonic
drive (E = 0), and the initial state of the corresponding phase
distribution as a uniform distribution P(ψ ) = 1/(2π ). Fig-
ures 3(1a)–3(1d) and Figs. 3(2a)–3(2d) show the results for
cases (i) and (ii), respectively, where the optimal waveforms
of E are plotted in Figs. 3(1a) and 3(2a), the phase-coupling
functions � are plotted in Figs. 3(1b) and 3(2b), the classical
distances Fc are plotted in Figs. 3(1c) and 3(2c), and the
quantum distance Fq are plotted in Figs. 3(1d) and 3(2d).

In case (i), the linear stability of the entrained state is
given by −�′

opt (0) = 0.226 in the optimized case, which is
higher than −�′

sin(0) = 0.208 in the sinusoidal case by a
factor �′

opt (0)/�′
sin(0) = 1.083. As a result, faster entrainment

to the entrained state can be observed in both Figs. 3(1c) and
3(1d) in the optimized cases. In case (ii), the linear stability
is given by −�′

opt (0) = 0.503 in the optimized case, which
is higher than −�′

sin(0) = 0.371 in the sinusoidal case by
a factor �′

opt (0)/�′
sin(0) = 1.358. Faster entrainment to the

entrained state can also be confirmed from Figs. 3(2c) and
3(2d), where both Fc and Fq converge faster in the optimized
cases.

Note that larger improvement factor is attained in case (ii)
than in case (i), which results from stronger anharmonicity
of the PSF in case (ii) than in case (i). This point will be
discussed in Sec. III D.

C. Enhancement of phase coherence

To evaluate the performance of the optimal waveform for
the phase coherence, we use the averaged maximum value of
the Wigner function 〈max W ψ 〉ψ , where W ψ is the Wigner
distribution of the density matrix ρ at phase ψ of the periodic
steady state obtained by direct numerical simulations of the
master equation (14). We also use the averaged maximum
value for the corresponding probability distribution of the
phase variable 〈max Pψ 〉ψ , where Pψ is the probability dis-
tribution at phase ψ of the periodic steady state obtained from
the reduced phase equation (6).

Figures 4(1a) and 4(2a) show the optimal waveforms of E ,
and Figs. 4(1b) and 4(2b) show the potential v of the phase
difference. In case (i), the maximum value of the potential v

is given by vopt (ψ ) = 0.4172 in the optimized case, which
is slightly higher than vsin(ψ ) = 0.4167 in the sinusoidal
case by a factor vopt (ψ )/vsin(ψ ) = 1.001. Accordingly,
we obtain a tiny enhancement of phase coherence from the
averaged maximum values of both the Wigner distribution of
the quantum system 〈maxW ψ

opt〉ψ/〈maxW ψ

sin〉ψ = 1.0028 and
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FIG. 3. Results of optimization for the entrainment stability in case (i) [(1a)–(1d)] and case (ii) [(2a)–(2d)]. Red lines show the results
for the optimal waveform, and blue lines show the results for the sinusoidal waveform. [(1a) and (2a)] Optimal waveform E of the periodic
amplitude modulation. [(1b) and (2b)] Interaction function �. [(1c) and (2c)] Classical distance Fc. [(1d) and (2d)] Quantum distance Fq.

the corresponding probability distribution of the classical
phase variable 〈maxPψ

opt〉ψ/〈maxPψ

sin〉ψ = 1.0076, although it
is difficult to see the difference from Fig. 4(1b) itself.

In case (ii), the maximum value of the potential v is
given by vopt (ψ ) = 0.7447 in the optimized case, which
is also slightly higher than vsin(ψ ) = 0.7411 in the sinu-
soidal case by vopt (ψ )/vsin(ψ ) = 1.005. We obtain a tiny
enhancement of phase coherence from both the averaged
maximum values of the Wigner function of the quantum sys-
tem 〈maxW ψ

opt〉ψ/〈maxW ψ

sin〉ψ = 1.0063 and the correspond-
ing probability distribution of the classical phase variable
〈maxPψ

opt〉ψ/ 〈maxPψ

sin〉ψ = 1.0143.
For the vdP oscillator used here, only tiny enhancements

in the phase coherence can be observed in both case (i) and
case (ii). This is because the PSF does not have strong high-
harmonic components in both cases (see Fig. 5). It should also
be noted that the improvement factor in case (ii) is larger than
in case (i), which results from stronger anharmonicity of the
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FIG. 4. Results for enhancement of phase coherence in case (i)
[(1a) and (1b)] and case (ii) [(2a) and (2b)]. Red lines show the results
for the optimal waveform, and blue lines show the results for the
sinusoidal waveform, respectively. [(1a) and (1b)] Optimal waveform
E of the periodic amplitude modulation. [(2a) and (2b)] Potential v

of the phase difference.

PSF in case (ii) than in case (i). We discuss these points in
Sec. III D.

D. Comparison of two optimization problems

In Sec. III B, we could observe that the optimized wave-
forms yield clearly faster convergence to the entrained state
than the sinusoidal waveform, indicating improvements in
the stability of the entrained state, while in Sec. III C, we
could observe only tiny enhancements in the phase coherence
from the sinusoidal case. This difference between the two
optimization problems can be explained from the general
expressions for the optimized waveforms.

The optimal waveform for the entrainment stability is
proportional to the differential of the x component Zx of
the PSF as can be seen from Eq. (11), while that for the
phase coherence is proportional to the integral of Zx as in
Eq. (13). Because the PSF is a 2π -periodic function, Zx can

0
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-

FIG. 5. Normalized absolute value of Fourier components
Z̄n = |Zn|/

∑∞
n=0 |Zn| in case (i) [(1)] and case (ii) [(2)]. In

case (i) (Z̄0, Z̄1, Z̄2, Z̄3, Z̄4, Z̄5, Z̄6, Z̄7, Z̄8, Z̄9) = (0, 0.87, 0, 0.12,

0, 0.009, 0, 0.001, 0, 0) and in case (ii) (Z̄0, Z̄1, Z̄2, Z̄3, Z̄4,

Z̄5, Z̄6, Z̄7, Z̄8, Z̄9) = (0, 0.741, 0, 0.219, 0, 0.034, 0, 0.005, 0, 0.001),
respectively.
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be expanded in a Fourier series as

Zx(θ ) =
∞∑

n=−∞
Zn exp[inθ ], (20)

where Zn (n = 0,±1,±2, · · · ) are the Fourier coefficients.
The differential of Zx(θ ) can then be expressed as

Z ′
x(θ ) =

∞∑
n=−∞

inZn exp[inθ ], (21)

and the integral of Zx(θ ) can be expressed as∫ θ+ψ

θ

Zx(θ )dψ

=
∞∑

n=−∞(n �=0)

Zn{exp[in(θ + ψ )] − exp[inθ ]}
in

, (22)

where n = 0 is omitted from the sum to avoid vanishing
denominator without changing the result. Thus, the devia-
tion of the differential Z ′

x(θ ) from the sinusoidal function is
larger because the nth Fourier component is multiplied by
n, while the deviation of the integral

∫ θ+ψ

θ
Zx(ψ )dψ from

the sinusoidal function is smaller because the nth Fourier
component is divided by n. This explains the difference in the
performance of the two optimization problems, namely why
we observed considerable improvement in the entrainment
stability while only tiny improvement in the phase coherence
from the simple sinusoidal waveform.

From the above expressions, we also find that the devia-
tions of Z ′

x(θ ) and
∫ θ+ψ

θ
Zx(θ )dψ from the sinusoidal func-

tion are more pronounced when the PSF possesses stronger
high-frequency components. Figures 5(1) and 5(2) show the
absolute values of the normalized Fourier components Z̄n =
|Zn|/

∑∞
n=0 |Zn| in cases (i) and (ii), respectively. It can be seen

that the PSF Z̄n in case (ii) has larger values of the normalized
high-frequency Fourier components than in case (i), which
leads to the larger improvement factor by the optimization in
case (ii) than in case (i).

IV. DISCUSSION

We considered two types of optimization problems for the
entrainment of a quantum nonlinear oscillator to a harmonic
drive with a periodic amplitude modulation in the semiclassi-
cal regime. We derived the optimal waveforms of the periodic
amplitude modulation by applying the optimization methods
originally formulated for classical limit-cycle oscillators to
the semiclassical phase equation describing a quantum non-
linear oscillator. Numerical simulations for the quantum vdP
oscillator with squeezing and Kerr effects showed that the
optimization of the entrainment stability leads to visibly faster
convergence to the entrained state than the simple sinusoidal
waveform, while the optimization for the phase coherence
provides only tiny enhancement of the phase coherence from
the sinusoidal case. These results were explained from the
Fourier-spectral properties of the PSF. The squeezing and
Kerr effects induced asymmetry of the limit-cycle orbit in the
classical limit and yielded PSFs with stronger high-harmonic
components, resulting in larger optimization performance. It

was also shown that optimization provides better performance
when the PSF of the limit cycle has stronger high-frequency
Fourier components in both problems.

The optimal waveforms for three typical optimization
problems, i.e., improvement of entrainment stability [38],
phase coherence [41], and locking range [37] (not consid-
ered in this study), which have been discussed for classical
nonlinear oscillators in the literature, are proportional to the
differential of the PSF, integral of PSF, and PSF itself, re-
spectively. All these waveforms yield negative feedback to
the phase difference between the oscillator and the periodic
forcing. It is interesting to note that these relations between
the optimal waveforms and PSFs bear some similarity to
the proportional-integral-differential (PID) controller in the
feedback control theory; in the framework of the PID control
for linear time invariant systems [50], the differential control
is often used for improving convergence, the integral control is
used for improving the steady-state property, and the propor-
tional control is used for improving the stability of the system.
Thus, similar to the PID controller, combined use of the three
types of optimization methods for nonlinear oscillators could
yield even better performance for achieving specific control
goals of entrainment.

Though we have considered only the optimization prob-
lems for the stability and phase coherence of the entrained
state in the present study, we would also be able to apply other
optimization and control methods developed for classical
limit-cycle oscillators, e.g., the phase-selective entrainment
of oscillators [42] and maximization of the linear stability
of mutual synchronization between two oscillators [39,40], to
quantum nonlinear oscillators by using the phase equation for
a quantum nonlinear dissipative oscillator under the semiclas-
sical approximation. Such methods of optimal entrainment
could be physically implemented with semiconductor optical
cavities [43] or optomechanical systems consisting of optical
cavities and mechanical devices [17] exhibiting limit-cycle
behaviors and useful in future applications of quantum syn-
chronization phenomena in quantum technologies.
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APPENDIX: DERIVATION OF THE
OPTIMAL WAVEFORMS

In this Appendix, we give the derivation of the optimal
waveforms. The optimization problems for the improvement
of entrainment stability and enhancement of phase coherence
are rewritten as

maximize
∫ 2π

0
[−Z ′

x(θ )]E (θ )dθ, s.t. 〈E2(θ )〉θ = P (A1)

012210-7



YUZURU KATO AND HIROYA NAKAO PHYSICAL REVIEW E 101, 012210 (2020)

and

maximize
∫ 2π

0

[
−

∫ θ+ψ

θ

Zx(φ)dφ

]
E (θ )dθ,

s.t. 〈E2(θ )〉θ = P, (A2)

respectively, where we assume ψ∗ = 0 without loss of gener-
ality. In order to analyze both problems together, we consider
a general form of an optimization problem,

maximize
∫ 2π

0
g(θ )E (θ )dθ, s.t. 〈E2(θ )〉θ = P, (A3)

where g(θ ) = −Z ′
x(θ ) for the entrainment stability and g(θ ) =

− ∫ θ+ψ

θ
Zx(φ)dφ for the phase coherence.

We consider an objective function

S{E , λ} = 〈g(θ )E (θ )〉θ + λ[〈E (θ )2〉θ − P], (A4)

where λ is a Lagrange multiplier. Then the extremum condi-
tions are given by

δS

δE
= 1

2π
g(θ ) + λ

π
E (θ ) = 0, (A5)

∂S

∂λ
= 〈E (θ )2〉θ − P = 0. (A6)

The optimal periodic modulation is given by

E (θ ) = −g(θ )

2λ
(A7)

and the constraint is
1

4λ2
〈g(θ )2〉θ = P, (A8)

which yields

λ = −
√

1

4P
〈g(θ )2〉θ , (A9)

where the negative sign should be taken in order that the
maximized objective function becomes positive.

Therefore, the optimal periodic modulation is given by

E (θ ) =
√

P

〈g(θ )2〉θ g(θ ). (A10)

From the above result, the optimal waveform for the entrain-
ment stability is given by

E (θ ) = −
√

P

〈Z ′
x(θ )2〉θ Z ′

x(θ ) (A11)

and that for the phase coherence is given by

E (θ ) = −
√

P〈[ ∫ θ+ψ

θ
Zx(φ)dφ

]2〉
θ

∫ θ+ψ

θ

Zx(φ)dφ. (A12)

When the limit cycle is symmetric and the x component Zx

of the PSF has a sinusoidal form, the optimal waveform is also
given by a trivial sinusoidal function, because the differential
and integral of a sinusoidal function are also sinusoidal.
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