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Optimization of mutual synchronization between a pair of limit-cycle oscillators with weak symmetric
coupling is considered in the framework of the phase-reduction theory. By generalizing our previous study [S.
Shirasaka, N. Watanabe, Y. Kawamura, and H. Nakao, Optimizing stability of mutual synchronization between a
pair of limit-cycle oscillators with weak cross coupling, Phys. Rev. E 96, 012223 (2017)] on the optimization of
cross-diffusion coupling matrices between the oscillators, we consider optimization of mutual coupling signals
to maximize the linear stability of the synchronized state, which are functionals of the past time sequences of the
oscillator states. For the case of linear coupling, optimization of the delay time and linear filtering of coupling
signals are considered. For the case of nonlinear coupling, general drive-response coupling is considered and
the optimal response and driving functions are derived. The theoretical results are illustrated by numerical
simulations.
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I. INTRODUCTION

Synchronization of rhythmic dynamical elements exhibit-
ing periodic oscillations is widely observed in the real
world [1–3]. Collective oscillations arising from the mutual
synchronization of dynamical elements often play important
functional roles, such as the synchronized secretion of insulin
from pancreatic beta cells [1,4] and synchronized oscillation
of power generators [3,5,6]. Clarifying the mechanisms of
collective synchronization and devising efficient methods of
mutual synchronization are thus both fundamentally and prac-
tically important.

The stable periodic dynamics of rhythmic elements are
often modeled as limit-cycle oscillators [1–3,7]. When mu-
tual interactions between limit-cycle oscillators are weak,
synchronization dynamics of the oscillators can be analyzed
using the phase-reduction theory [1,8–12]. In this approach,
nonlinear multidimensional dynamics of an oscillator is re-
duced to a simple approximate phase equation, characterized
by the natural frequency and phase sensitivity of the oscillator.
The phase-reduction theory facilitates systematic and detailed
analysis of synchronization dynamics. It has been used to
explain nontrivial synchronization dynamics of coupled oscil-
lators, such as the collective synchronization transition of an
ensemble of coupled oscillators [1,8–12]. Generalization of
the method for nonconventional limit-cycling systems, such
as time-delayed oscillators [13,14], hybrid oscillators [15,16],
collectively oscillating networks [17], and rhythmic spa-
tiotemporal patterns [18,19], has also been discussed.

*Author to whom all correspondence should be addressed:
kato.y.bg@m.titech.ac.jp

Recently, the phase-reduction theory has been applied for
the control and optimization of synchronization dynamics in
oscillatory systems. For example, Moehlis et al. [20], Harada
et al. [21], Dasanayake and Li [22], Zlotnik et al. [23–25],
Pikovsky [26], Tanaka et al. [27–29], Wilson et al. [30],
Pyragas et al. [31], and Monga et al. [32,33] have used
the phase-reduction theory (as well as the phase-amplitude
reduction theory) to derive optimal driving signals for the
stable entrainment of nonlinear oscillators in various physical
situations.

In a similar spirit, in our previous study [34], we considered
a problem of improving the linear stability of synchronized
state between a pair of limit-cycle oscillators by optimizing
a cross-diffusion coupling matrix between the oscillators,
where different components of the oscillators are allowed to
interact. We also considered a pair of mutually interacting
reaction-diffusion systems exhibiting rhythmic spatiotempo-
ral patterns, and we derived optimal spatial filters for stable
mutual synchronization [35].

In this study, we consider this problem in a more general
setting, whereby the oscillators can interact not only by their
present states but also through the time sequences of their
past states. We first consider linear coupling with time delay
or temporal filtering, and we derive the optimal delay time
or linear filter. We then consider general nonlinear coupling
with a mutual drive-response configuration, and we derive
the optimal response function and driving function for stable
synchronization. We argue that, although we consider general
coupling that can depend on the past time sequences of the
oscillators, the optimal mutual coupling can be obtained as a
function of the present phase values of the oscillators in the
framework of the phase-reduction approximation. The results
are illustrated by numerical simulations using Stuart-Landau
and FitzHugh-Nagumo oscillators as examples.
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This paper is organized as follows. In Sec. II, we introduce
a general model of coupled limit-cycle oscillators and reduce
it to coupled phase equations. In Sec. III, we consider the
case with linear coupling and derive the optimal time delay
and optimal linear filter for coupling signals. In Sec. IV, we
consider nonlinear coupling of the drive-response type and
derive the optimal response function and driving function. In
Sec. V, a summary is provided.

II. MODEL

A. Pair of weakly coupled oscillators

In this study, we consider a pair of weakly and symmetri-
cally coupled limit-cycle oscillators with identical properties,
where the oscillators can mutually interact not only through
their present states but also through their past time sequences.
We assume that the oscillators are generally described by the
following set of functional differential equations:

Ẋ 1(t ) = F(X 1(t )) + εĤ
{
X (t )

1 (·), X (t )
2 (·)},

Ẋ 2(t ) = F(X 2(t )) + εĤ
{
X (t )

2 (·), X (t )
1 (·)}, (1)

where X 1,2 ∈ RN are N-dimensional state vectors of the oscil-
lators 1 and 2 at time t , F : RN → RN is a sufficiently smooth
vector field representing the dynamics of individual oscilla-
tors, and εĤ represents weak mutual coupling between the
oscillators. Here, Ĥ : C × C → RN (C is a function space of
the time sequences of length L) is a sufficiently smooth func-
tional of two vector functions, i.e., the past time sequences
of X 1,2(t ), and 0 < ε � 1 is a small parameter representing
the smallness of the mutual coupling. We assume that each
isolated oscillator, Ẋ = F(X ), has an exponentially stable
limit cycle X̃ 0(t ) = X̃ 0(t + T ) of period T and frequency
ω = 2π/T , and the deviation of the oscillator state from this
limit cycle remains small even if weak perturbations due to
the mutual coupling are applied.

We use the standard notation of functional differential
equations [36] to represent the time sequences of X 1,2 in
the coupling functional Ĥ . Namely, the symbol X (t )

i (·) ∈ C
(i = 1, 2) represents the time sequence of X i on the interval
[t − L, t], defined by

X (t )
i (σ ) = X i(t + σ ) (−L � σ � 0), (2)

where the parameter σ runs from −L to 0. The length L � 0 of
the time sequences used for the coupling is arbitrary as long
as the assumption described later is satisfied. We abbreviate
these time sequences as X (t )

i hereafter. In Eq. (1), the symbol
(·) indicates that Ĥ is a functional, which depends not only
on the values of X 1,2 at a particular time but generally on the
time sequences of X 1,2. We omit this symbol hereafter unless
necessary.

B. Phase reduction and averaging

For weakly coupled limit-cycle oscillators, we can em-
ploy the standard method of phase reduction [1,8–12]. Let
us consider a single isolated oscillator for the moment. We
can introduce a phase function �(X ) : RN → [0, 2π ), which
maps the oscillator state to a phase value, such that it satisfies
F(X ) · ∇�(X ) = ω in the whole basin of the limit cycle.

Using this �(X ), the phase variable of the oscillator can
be defined as θ = �(X ), which constantly increases with
time as θ̇ = �̇(X ) = ω in the basin of the limit cycle (2π is
identified with 0). The oscillator state on the limit cycle can
be represented as a function of θ as X 0(θ ) = X̃ 0(t = θ/ω),
which is a 2π -periodic function of θ , X 0(θ ) = X 0(θ + 2π ).
Similar to Eq. (2), in order to represent a time sequence on the
limit cycle, we introduce a notation

X (θ )
0 (σ ) = X 0(θ + ωσ ) (−L � σ � 0) (3)

and abbreviate this as X (θ )
0 .

The linear response property of the oscillator phase to weak
perturbations is characterized by the phase sensitivity function
(PSF), defined by Z(θ ) = ∇�(X )|X=X0(θ ) : [0, 2π ) → RN .
That is, when the oscillator is weakly driven by a pertur-
bation p as Ẋ = F(X ) + εp, the phase θ of the oscillator
approximately obeys a reduced phase equation, θ̇ = ω +
εZ(θ ) · p, which is correct up to O(ε). The PSF can be
calculated as a 2π -periodic solution to an adjoint equation
ωdZ(θ )/dθ = −J†(X 0(θ ))Z(θ ) with a normalization condi-
tion Z(θ ) · dX 0(θ )/dθ = 1, where J (X ) : RN → RN×N is a
Jacobian matrix of F at X , and † denotes transpose. In the
numerical analysis, Z(θ ) can be calculated easily using the
backward time evolution of the adjoint equation as proposed
by Ermentrout [10].

Let us now consider a pair of weakly coupled oscillators
described by Eq. (1). We define the phase values of the oscil-
lators 1, 2 as θ1,2 = �(X 1,2). When the perturbation applied
to the oscillators is sufficiently weak and of O(ε), the state
vector of each oscillator can be approximated as X 1,2(t ) ≈
X 0(θ1,2(t )) as a function of the phase θ1,2(t ) within the error
of O(ε). More generally, we assume that the deviation of the
oscillator state from the limit cycle is small and of O(ε) in the
whole interval [t − L, t], i.e.,

X (t )
1,2(σ ) = X [θ1,2(t )]

0 (σ ) + O(ε) (−L � σ � 0). (4)

It then follows from the smoothness of Ĥ that

Ĥ
{
X (t )

1 , X (t )
2

} = Ĥ
{
X [θ1(t )]

0 , X [θ2(t )]
0

} + O(εL). (5)

We assume hereafter that the length L satisfies L � 1/ε, i.e.,
Ĥ{X (t )

1 , X (t )
2 } ≈ Ĥ{X [θ1(t )]

0 , X [θ2(t )]
0 } within the error of O(ε).

By the phase reduction, we obtain the following pair of
phase equations from Eq. (1):

θ̇1(t ) = ω + εZ(θ1(t )) · Ĥ
{
X (t )

1 , X (t )
2

}
,

θ̇2(t ) = ω + εZ(θ2(t )) · Ĥ
{
X (t )

2 , X (t )
1

}
, (6)

which are correct up to O(ε). Substituting Eq. (5) into Eq. (6)
and ignoring errors of O(ε2), we obtain a pair of reduced
phase equations,

θ̇1 = ω + εZ(θ1) · Ĥ
{
X (θ1 )

0 , X (θ2 )
0

}
,

θ̇2 = ω + εZ(θ2) · Ĥ
{
X (θ2 )

0 , X (θ1 )
0

}
, (7)

which are also correct up to O(ε). Thus, we can neglect the
deviations of the oscillator states from the limit cycle at the
lowest order approximation.

The coupling term in Eq. (7), Ĥ{X (θ1 )
0 , X (θ2 )

0 }, is formally a
functional of the two time sequences X (θ1 )

0 and X (θ2 )
0 . However,
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these functions X (θ1 )
0 and X (θ2 )

0 are determined only by the two
phase values θ1 and θ2. Therefore, we can regard the coupling
term Ĥ{X (θ1 )

0 , X (θ2 )
0 } as an ordinary function of θ1 and θ2,

defined by

H (θ1, θ2) = Ĥ
{
X (θ1 )

0 , X (θ2 )
0

}
, (8)

and we rewrite the phase equations as

θ̇1 = ω + εZ(θ1) · H (θ1, θ2),

θ̇2 = ω + εZ(θ2) · H (θ2, θ1). (9)

It should be stressed that, although we started from Eq. (1)
with general coupling functionals that depend on the past time
sequences of the oscillators, the coupled system reduces to a
pair of simple ordinary differential equations that depend only
on the present phase values θ1 and θ2 of the oscillators within
the phase-reduction approximation.

Once we have obtained Eq. (9), we can follow the standard
averaging procedure of the phase-reduction theory [8,9]. We
introduce slow phase variables φ1,2 = θ1,2 − ωt , rewrite the
equations as

φ̇1 = εZ(φ1 + ωt ) · H (φ1 + ωt, φ2 + ωt ),

φ̇2 = εZ(φ2 + ωt ) · H (φ2 + ωt, φ1 + ωt ), (10)

and average the small right-hand side of these equations over
one period of oscillation. This yields the following averaged
phase equations, which are correct up to O(ε):

θ̇1 = ω + ε	(θ1 − θ2),

θ̇2 = ω + ε	(θ2 − θ1), (11)

where 	(φ) is the phase coupling function defined as

	(φ) = 1

2π

∫ 2π

0
Z(φ + ψ ) · H (φ + ψ,ψ )dψ

= 〈Z(φ + ψ ) · H (φ + ψ,ψ )〉ψ
= 〈Z(ψ ) · H (ψ,ψ − φ)〉ψ. (12)

Here, we have defined an average of a function f (ψ ) over one
period of oscillation as

〈 f (ψ )〉ψ = 1

2π

∫ 2π

0
f (ψ )dψ. (13)

C. Linear stability of the in-phase synchronized state

From the coupled phase equations (11), the dynamics of
the phase difference φ = θ1 − θ2 obeys

φ̇ = ε[	(φ) − 	(−φ)], (14)

where the right-hand side is (twice) the antisymmetric part
of the phase coupling function 	(φ). This equation always
has a fixed point at φ = 0 corresponding to the in-phase
synchronized state. In a small vicinity of φ = 0, the above
equation can be linearized as

φ̇ ≈ 2ε	′(0)φ. (15)

The derivative of the phase coupling function is given by

	′(φ) = − 〈Z(ψ ) · H ′
2(ψ,ψ − φ)〉ψ, (16)

where

H ′
2(ψ1, ψ2) = ∂H (ψ1, ψ2)

∂ψ2
(17)

is the partial derivative of H with respect to the second argu-
ment. Thus, the linear stability of this state is characterized
by the exponent 2ε	′(0), and a larger −	′(0) yields a higher
linear stability of the in-phase synchronized state.

In this study, we consider optimization of either the param-
eters or functions included in the mutual coupling term H so
that the linear stability

−	′(0) =〈Z(ψ ) · H ′
2(ψ,ψ )〉ψ (18)

of the in-phase synchronized state, φ = 0, is maximized under
appropriate constraints on the intensity of the mutual cou-
pling.

D. Examples of limit-cycle oscillators

The Stuart-Landau (SL) oscillator is used in the following
numerical examples. It is a normal form of the supercritical
Hopf bifurcation and is described by

X =
(

x
y

)
∈ R2, (19)

F =
(

Fx

Fy

)
=

(
x − ay − (x2 + y2)(x − by)
ax + y − (x2 + y2)(bx + y)

)
, (20)

where the parameters are fixed at a = 2 and b = 1. This
oscillator has a stable limit cycle with a natural frequency
ω = a − b = 1 and period T = 2π , represented by

X 0(θ ) =
(

x0(θ )
y0(θ )

)
=

(
cos θ

sin θ

)
(0 � θ < 2π ). (21)

The phase function can be explicitly represented by

�(x, y) = arctan
y

x
− b

2
ln(x2 + y2) (22)

on the whole xy-plane except (0, 0), and the PSF is given by

Z(θ ) =
(

Zx

Zy

)
=

(− sin θ − b cos θ

cos θ − b sin θ

)
. (23)

As another example, we use the FitzHugh-Nagumo (FHN)
oscillator, described by

X =
(

x
y

)
∈ R2, (24)

F =
(

Fx

Fy

)
=

(
x(x − c)(1 − x) − y

μ−1(x − dy)

)
, (25)

where the parameters are fixed at c = −0.1, d = 0.5, and μ =
100. As μ is large, this oscillator is a slow-fast system whose
x variable evolves much faster than the y variable, leading to
relaxation oscillations. With these parameters, the natural pe-
riod of the oscillation is T ≈ 126.7 and the natural frequency
is ω ≈ 0.0496. The limit cycle X 0(θ ) = (x0(θ ), y0(θ ))† and
phase function �(X ) cannot be obtained analytically for this
model, but the PSF Z(θ ) can be obtained by numerically solv-
ing the adjoint equation. Figure 1 shows the time sequences
of the limit-cycle orbit X 0(θ ) and PSF Z(θ ) for one period of
oscillation, 0 � θ < 2π .
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(a)

(b)

FIG. 1. Limit-cycle orbit and phase sensitivity function of the
FitzHugh-Nagumo oscillator. Time sequences of the x and y compo-
nents are plotted for one period of oscillation, 0 � θ < 2π . (a) Limit
cycle (x0(θ ), y0(θ )). (b) Phase sensitivity function (Zx (θ ), Zy(θ )).

III. LINEAR COUPLING

A. Linear coupling without self-coupling terms

In this section, we consider the case in which the oscillators
are linearly coupled, i.e., the coupling functional can be ex-
pressed as Ĥ{X (t )

1 , X (t )
2 } = Ĝ{X (t )

2 } + Î{X (t )
1 }, where Ĝ{X (t )}

and Î{X (t )} are linear functionals of X (t ). The oscillators obey

Ẋ 1(t ) = F(X 1(t )) + ε
[
Ĝ

{
X (t )

2

} + Î
{
X (t )

1

}]
,

Ẋ 2(t ) = F(X 2(t )) + ε
[
Ĝ

{
X (t )

1

} + Î
{
X (t )

2

}]
, (26)

where Ĝ{X (t )
2,1} and Î{X (t )

1,2} in each equation represent the
effects of the coupling from the other oscillator and the
self-coupling with itself, respectively. For example, when
Î{X (t )} = −Ĝ{X (t )}, we obtain diffusive coupling that de-
pends on the state difference between the oscillators. In partic-
ular, when Î{X (t )} = 0, we obtain coupled oscillators without
the self-coupling terms,

Ẋ 1(t ) = F(X 1(t )) + εĜ
{
X (t )

2

}
,

Ẋ 2(t ) = F(X 2(t )) + εĜ
{
X (t )

1

}
. (27)

In Appendix A, it is shown that the above two models with
and without the self-coupling term Î{X (t )

1,2} are equivalent
within the phase-reduction approximation in the sense that
both models have the in-phase synchronized state with the
same linear stability as a solution. We thus analyze Eq. (27) in
the following subsections.

As typical coupling schemes, we analyze a simple time-
delayed coupling, where each oscillator is driven by the past
state of the other oscillator with a fixed time delay, and a more
general coupling via linear filtering, where each oscillator is
driven by a linearly filtered signal of the past time sequences
of the other oscillator.

B. Time-delayed coupling

First, we consider a simple time-delayed coupling, where
each oscillator is driven by the past state of the other oscillator.

The model is given by

Ẋ 1 = F(X 1) + ε
√

PKX 2(t − τ ),

Ẋ 2 = F(X 2) + ε
√

PKX 1(t − τ ), (28)

where 0 < ε � 1 is a small parameter representing the
strength of the interaction, P > 0 is a real constant that con-
trols the norm of the coupling signal, K ∈ RN×N is a constant
matrix specifying which components of the oscillator states
X 1,2(t ) are coupled, and τ (0 � τ � L) is a time delay. In
our previous study [34], we considered optimization of the
matrix K for the case in which the two oscillators are nearly
identical and coupled without time delay. Here, we consider
two oscillators with identical properties, fix the matrix K
constant, and vary the time delay τ to improve the linear
stability of the in-phase synchronized state.

In this case, the coupling functionals are given by

Ĥ
{
X (t )

1 , X (t )
2

} =
√

PKX 2(t − τ ),

Ĥ
{
X (t )

2 , X (t )
1

} =
√

PKX 1(t − τ ), (29)

which can be expressed as functions of θ1 and θ2 as

H (θ1, θ2) =
√

PKX 0(θ2 − ωτ ),

H (θ2, θ1) =
√

PKX 0(θ1 − ωτ ), (30)

after phase reduction. The phase coupling function is

	(φ) = 〈Z(ψ ) · H (ψ,ψ − φ)〉ψ
= 〈Z(ψ ) ·

√
PKX 0(ψ − φ − ωτ )〉ψ, (31)

and the linear stability is characterized by

−	′(0) = 〈Z(ψ ) · H ′
2(ψ,ψ )〉ψ

= 〈Z(ψ ) ·
√

PKX ′
0(ψ − ωτ )〉ψ, (32)

where X ′
0(θ ) = dX 0(θ )/dθ .

The maximum stability is attained only when τ satisfies

∂

∂τ
{−	′(0)} = −ω〈Z(ψ ) ·

√
PKX ′′

0 (ψ − ωτ )〉ψ = 0, (33)

where X ′′
0 (θ ) = d2X 0(θ )/dθ2. We denote the value of τ satis-

fying the above equation as τ ∗, i.e.,

〈Z(ψ ) ·
√

PKX ′′
0 (ψ − ωτ ∗)〉ψ = 0. (34)

By partial integration using the 2π -periodicity of Z(θ ) and
X 0(θ ), this can also be expressed as

〈Z′(ψ ) ·
√

PKX ′
0(ψ − ωτ ∗)〉ψ = 0, (35)

which has the form of a cross-correlation function between
Z′(θ ) and

√
PKX ′

0(θ ). Because both of these functions are
2π -periodic with zero-mean, the left-hand side of Eq. (35) is
also 2π -periodic with zero mean. Thus, there are at least two
values of τ satisfying the above equation, as long as Z′(θ ) and√

PKX ′
0(θ ) are nonconstant functions (which holds generally

for ordinary limit cycles). By choosing an appropriate value
of τ ∗, the maximum stability is given by

−	′(0) =
√

P〈Z(ψ ) · KX ′
0(ψ − ωτ ∗)〉2

ψ. (36)

042205-4



OPTIMIZATION OF LINEAR AND NONLINEAR INTERACTION … PHYSICAL REVIEW E 100, 042205 (2019)

C. Coupling via linear filtering

Generalizing the time-delayed coupling, we consider a
case in which the past time sequences of both oscillator states
are linearly filtered and used as driving signals for the other
oscillators. The model is given by

Ẋ 1 = F(X 1) + ε

∫ L

0
h(τ )KX 2(t − τ )dτ,

Ẋ 2 = F(X 2) + ε

∫ L

0
h(τ )KX 1(t − τ )dτ, (37)

where h(τ ) : [0, L] → R is a real scalar function representing
a linear filter, which transforms the sequence of the oscillator
state to a coupling signal, and K ∈ RN×N is a constant matrix
specifying which components of X are coupled. We optimize
the linear filter h(τ ) for a given coupling matrix K under a
constraint specified below.

The coupling functionals are given by

Ĥ
{
X (t )

1 , X (t )
2

} =
∫ L

0
h(τ )KX 2(t − τ )dτ,

Ĥ
{
X (t )

2 , X (t )
1

} =
∫ L

0
h(τ )KX 1(t − τ )dτ, (38)

which simplify to ordinary functions

H (θ1, θ2) =
∫ L

0
h(τ )KX 0(θ2 − ωτ )dτ,

H (θ2, θ1) =
∫ L

0
h(τ )KX 0(θ1 − ωτ )dτ, (39)

after phase reduction. The phase coupling function is given by

	(φ) =
〈
Z(φ + ψ ) ·

∫ L

0
h(τ )KX 0(ψ − ωτ )dτ

〉
ψ

=
〈∫ L

0
Z(ψ ) · h(τ )KX 0(ψ − ωτ − φ)dτ

〉
ψ

(40)

and the linear stability of the in-phase synchronized state is
characterized by

−	′(0) =
〈∫ L

0
Z(ψ ) · h(τ )KX ′

0(ψ − ωτ )dτ

〉
ψ

. (41)

We constrain the L2-norm ‖h(τ )‖ =
√∫ L

0 h(τ )2dτ of the

linear filter, h(τ ), as ‖h(τ )‖2 = Q, where Q > 0 controls the
overall coupling intensity, and we seek the optimal h(τ ) that
maximizes the linear stability, −	′(0). That is, we consider an
optimization problem:

maximize − 	′(0) subject to ‖h(τ )‖2 = Q. (42)

To this end, we define an objective functional as

S{h, λ} = − 	′(0) + λ[‖h(ψ )‖2 − Q]

=
〈∫ L

0
Z(ψ ) · h(τ )KX ′

0(−ωτ + ψ )dτ

〉
ψ

+ λ

(∫ L

0
h(τ )2dτ − Q

)
, (43)

where λ is a Lagrange multiplier. From the extremum condi-
tion of S, the functional derivative of S with respect to h(τ )
should satisfy

δS

δh(τ )
= 〈Z(ψ ) · KX ′

0(−ωτ + ψ )〉ψ + 2λh(τ ) = 0 (44)

and the partial derivative of S by λ should satisfy

∂S

∂λ
=

∫ L

0
h(τ )2dτ − Q = 0. (45)

Thus, the optimal linear filter h(τ ) is given by

h(τ ) = − 1

2λ
〈Z(ψ ) · KX ′

0(ψ − ωτ )〉ψ. (46)

The Lagrange multiplier λ is determined from the constraint
‖h(τ )‖2 = Q, i.e.,

1

4λ2

∫ L

0
〈Z(ψ ) · KX ′

0(ψ − ωτ )〉2
ψdτ = Q (47)

as

λ = −
√

1

4Q

∫ L

0
〈Z(ψ ) · KX ′

0(ψ − ωτ )〉2
ψdτ , (48)

where the negative sign should be chosen for the in-phase
synchronized state to be linearly stable, −	′(0) > 0. The
maximum linear stability with the optimized h(τ ) is

−	′(0) =
√

Q
∫ L

0
〈Z(ψ ) · KX ′

0(ψ − ωτ )〉2
ψdτ . (49)

D. Numerical examples

1. Setup

We use the SL and FHN oscillators in the following nu-
merical illustrations. In the following examples, we assume
that the length L of the time sequence is equal to the period
T of the oscillation, L = T , that is, we use a whole period of
the time sequence of the oscillation for the coupling. For both
models, the coupling matrix is assumed to be

K =
(

1 0
0 0

)
. (50)

We compare the optimized cases with the nonoptimized case,
i.e.,

Ẋ 1 = F(X 1) + ε
√

PKX 2(t ),

Ẋ 2 = F(X 2) + ε
√

PKX 1(t ), (51)

where ε is a small parameter that determines the coupling
strength, and P controls the norm of the coupling signal.

2. Time-delayed coupling

In this case, the mean square of the coupling term over one
period of oscillation is the same irrespective of the time delay,
that is,

〈|
√

PKX 0(ψ )|2〉ψ = 〈|
√

PKX 0(ψ − ωτ ∗)|2〉ψ. (52)

First, for the SL oscillator, we can analytically calculate
the optimal time delay. The linear stability of the in-phase
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no delay

optimal

optimal (DNS)

(a)

Δ

t

φ

t

optimal (phase)

no delay (DNS)

no delay (phase)

6

2

FIG. 2. Synchronization of two Stuart-Landau oscillators coupled with time delay. The results with the optimal time delay are compared
with those without time delay. (a) Evolution of the difference �x between x variables of the two oscillators. (b) Evolution of the phase
difference φ between the oscillators, where results of direct numerical simulations (DNSs) of the original model are compared with those of
the reduced phase model.

synchronized state, Eq. (32), is given by

−	′(0) =
√

P〈Zx(ψ )x′
0(ψ − ωτ )〉ψ

=
√

P

2
[cos(ωτ ) − b sin(ωτ )]. (53)

The optimal time delay τ = τ ∗ is determined from Eq. (33),
or equivalently from

〈Zx(ψ )x′′
0 (ψ − ωτ )〉ψ = b cos(ωτ ) + sin(ωτ )

2
= 0. (54)

For the parameter values b = 1 and ω = 1, this equation
is satisfied when τ = 3π/4 or τ = 7π/4 (0 � τ < L = T ).
Substituting this into Eq. (53), we find that τ ∗ = 7π/4 should
be chosen, and the maximum linear stability is given by
−	′(0) = √

P/
√

2. For the case with no time delay, the linear
stability is −	′(0) = √

P/2. Thus, by appropriately choosing
the time delay, the linear stability improves by a factor of

√
2

in this case.
Figure 2 shows synchronization of two SL oscillators for

the cases with the optimal time delay and without time delay,
where ε = 0.02, P = 1, and the initial phase difference is
φ(0) = π/4. In Fig. 2(a), the difference �x between the x
variables of the two oscillators, obtained by direct numerical
simulations of the coupled SL oscillators, is plotted as a
function of t . It can be seen that the in-phase synchronized
state is established faster in the optimized case because of
the higher linear stability. Figure 2(b) shows the convergence
of the phase difference φ to 0. It can be seen that the results
of the reduced phase equation agree well with those of direct
numerical simulations.

Figure 3 shows the results for two FHN oscillators, where
ε = 0.003, P = 1, and the initial phase difference is φ = π/4.
Figure 3(a) plots the linear stability −	′(0) and its derivative
−∂	′(0)/∂τ as functions of the time delay τ , where there
are two extrema of −	′(0). We choose the larger extremum,
which is attained at the optimal time delay τ ∗ ≈ 117.6. The
antisymmetric part of the phase coupling function, 	(φ) −
	(−φ), is shown in Fig. 3(b) for the cases with the optimal
delay and without delay.

It can be seen that the stability of the in-phase synchronized
state φ = 0 is improved, as indicated by the straight lines in

Fig. 3(b), where −	′(0) ≈ 0.654 with the optimized time de-
lay and −	′(0) ≈ 0.221 without the time delay. The evolution
of the difference �x between the x variables of the oscillators
is plotted as a function of t in Fig. 3(c). The phase differences
φ converging toward 0, obtained from the phase equation and
direct numerical simulations of the original model, are shown
in Fig. 3(d). It can be seen that the convergence to the in-phase
synchronization is faster with the optimized time delay, and
the results of the reduced phase equation agree well with
direct numerical simulations.

3. Coupling via linear filtering

We again assume that the coupling matrix K is given by
Eq. (50), and we compare the results for the optimized case
with linear filtering with those for the nonfiltered case given
by Eq. (51). We choose the parameter Q that constrains the
norm of the linear filter such that the squared average of the
coupling term over one period of oscillation becomes equal to
that in the nonfiltered case given by Eq. (51), i.e.,〈∣∣∣∣

∫ L

0
h(τ )KX 0(ψ − ωτ )dτ

∣∣∣∣
2
〉

ψ

= 〈|
√

PKX 0(ψ )|2〉ψ.

(55)

For the SL oscillators, the optimal filter h(τ ), Eq. (46), is
explicitly calculated as

h(τ ) =
√

Qω

π (1 + b2)
[cos(ωτ ) − b sin(ωτ )]. (56)

The optimal phase coupling function, Eq. (40), and optimized
linear stability, Eq. (49), are expressed as

	(φ) = −1

2

√
π (1 + b2)Q

ω
sin φ (57)

and

−	′(0) = 1

2

√
π (1 + b2)Q

ω
, (58)

respectively. We take Q = ωP/π so that Eq. (55) is satisfied.
The linear stability is then −	′(0) =

√
(1 + b2)P/2 when the

optimized linear filter is used and −	′(0) = √
P/2 when no
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(a) (b) no delay
optimal

(c) no delay
optimal

(d) no delay(phase)
no delay(DNS)
optimal(phase)
optimal(DNS)

FIG. 3. Synchronization of two FitzHugh-Nagumo oscillators coupled with time delay. In (b)–(d), the results with the optimal time delay
are compared with those without time delay. (a) Linear stability −	′(0) and its derivative −∂	′(0)/∂τ vs time delay τ . The crosses indicate
the values of τ where −∂	′(0)/∂τ = 0. (b) Antisymmetric part of the phase coupling function, 	(φ) − 	(−φ). (c) Evolution of the difference
�x between x variables of the two oscillators. (d) Evolution of the phase difference φ between the oscillators. Results of DNSs of the original
model are compared with those of the phase model.

filtering of the oscillator state is performed. Thus, the linear
stability is improved by a factor of

√
2 when b = 1.

It is important to note that, in the SL oscillator case,
X 0(ψ ), Z(ψ ), and hence the linear filter h(τ ) contain only the
fundamental frequency, i.e., they are purely sinusoidal. Thus,
the linear filtering can only shift the phase of the coupling
signal and gives the same result as the previous case with the
simple time delay. It is also interesting to note that the stability
cannot be improved (it is already optimal without filtering)
when the parameter b, which characterizes nonisochronicity
of the limit cycle, is zero.

Figure 4 shows the synchronization of two SL oscillators,
with and without linear filtering, where ε = 0.02, P = 1, and
the initial phase difference is φ = π/4. Figure 4(a) shows the
evolution of the difference �x between the x variables of the
oscillators, and Fig. 4(b) shows the convergence of the phase
difference φ to 0. We can see that the in-phase synchronized
state is established faster in the optimized case, and the results
of the reduced phase model and direct numerical simulations
agree well.

For the FHN oscillators, the optimal linear filter can be
calculated from the time sequences of the limit-cycle solution

no filter (phase)

no filter (DNS)

optimal (phase)

optimal (DNS)

(a)

Δ

t

(b)

φ

t

6

2

no filter
optimal

FIG. 4. Synchronization of two Stuart-Landau oscillators coupled with linear filtering. The results with the optimal filtering are compared
with those without filtering. (a) Evolution of the difference �x in the x variables between the oscillators. (b) Evolution of the phase difference
φ between the oscillators. Results of DNSs of the original model are compared with those of the phase model.
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(a) (b)
no filter
optimal

(c) no filter
optimal

(d) no filter(phase)
no filter(DNS)
optimal(phase)
optimal(DNS)

FIG. 5. Synchronization of two FitzHugh-Nagumo oscillators coupled with linear filtering. In (b)–(d), the results with the optimal filtering
are compared with those without filtering. (a) Optimal linear filter h(τ ). (b) Antisymmetric part of the phase coupling function 	(φ) − 	(−φ).
(c) Evolution of the difference �x in the x variables between the oscillators. (d) Evolution of the phase difference φ between the oscillators.
Results of DNSs of the original model are compared with those of the phase model.

and PSF obtained numerically. Figure 5 shows the synchro-
nization of two coupled FHN oscillators, with and without
linear filtering, where ε = 0.003, P = 1, Q ≈ 0.0522, and the
initial phase difference is φ = π/4. Figure 5(a) shows the op-
timal filter, (b) shows the antisymmetric part 	(φ) − 	(−φ)
of the phase coupling function 	(φ), (c) shows the evolution
of the difference �x between the x variables of the oscillators,
and (d) shows the convergence of the phase difference φ

toward 0. The linear stability is given by −	′(0) ≈ 0.844 for
the case with the optimal filter and by −	′(0) ≈ 0.221 for
the case without filtering, as shown by the straight lines in
Fig. 5(b). The in-phase synchronized state is established faster
in the optimized case, and the results of the reduced phase
model and direct numerical simulations agree well. Because
the FHN oscillator has the higher harmonic components in
X 0(ψ ) and Z(ψ ), the optimal filter h(τ ) can exploit these
components, and hence the improvement in the linear stability
is larger than that for the case with simple delay.

IV. NONLINEAR COUPLING

A. Mutual drive-response coupling

In this section, we consider the case in which the oscillators
interact through nonlinear coupling functionals, and we seek
the optimal forms of the coupling functional. It should be
noted here that the functional form of Ĥ{X (t )

1 , X (t )
2 }, which

depends on both time sequences of the oscillators, cannot be
determined in the present problem of optimizing the linear

stability −	′(0) of the in-phase synchronized state. Because
−	′(0) is evaluated only in the completely in-phase syn-
chronized state of the two oscillators, i.e., only when X (t )

1 =
X (t )

2 = X [θ (t )]
0 [see Eqs. (8) and (18)], no information for the

case with X (t )
1 �= X (t )

2 can be attained from −	′(0).
We thus assume that the coupling is of a drive-response

type, i.e., it can be written as a product of a response matrix
of the driven oscillator and a driving function that transforms
the signal from the other oscillator as

Ĥ
{
X (t )

1 , X (t )
2

} = Â
{
X (t )

1

}
Ĝ

{
X (t )

2

}
, (59)

where the matrix Â : C → RN×N is a functional of the time
sequence of each oscillator representing its response proper-
ties, and Ĝ : C → RN is a functional that transforms the time
sequence of the other oscillator to a driving signal. The model
is given by

Ẋ 1(t ) = F(X 1(t )) + εÂ
{
X (t )

1

}
Ĝ

{
X (t )

2

}
,

Ẋ 2(t ) = F(X 2(t )) + εÂ
{
X (t )

2

}
Ĝ

{
X (t )

1

}
. (60)

Similar to the previous case of linear coupling, we may also
include self-coupling terms of the form εÎ{X (t )

1,2} to the model
as

Ẋ 1(t ) = F(X 1(t )) + ε
(
Â

{
X (t )

1

}
Ĝ

{
X (t )

2

} + Î
{
X (t )

1

})
,

Ẋ 2(t ) = F(X 2(t )) + ε
(
Â

{
X (t )

2

}
Ĝ

{
X (t )

1

} + Î
{
X (t )

2

})
. (61)

For example, when Î{X (t )} = −Â{X (t )}Ĝ{X (t )}, we obtain
(nonlinear) diffusive coupling. As explained in Appendix A,
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inclusion of such self-coupling terms does not alter the results,
and the linear stability remains the same in the framework of
the phase-reduction theory. We thus analyze Eq. (60) in the
following subsections.

The coupling functionals in this case are given by

Ĥ
{
X (t )

1 , X (t )
2

} = Â
{
X (t )

1

}
Ĝ

{
X (t )

2

}
,

Ĥ
{
X (t )

2 , X (t )
1

} = Â
{
X (t )

2

}
Ĝ

{
X (t )

1

}
, (62)

and, as argued in Sec. II B, at the lowest-order phase reduc-
tion, these functionals can be expressed as ordinary functions
of the phase θ1 and θ2 as

H (θ1, θ2) = A(θ1)G(θ2),

H (θ2, θ1) = A(θ2)G(θ1), (63)

where we introduced ordinary 2π -periodic functions A and
G of θ1 and θ2. Using these functions, the phase coupling
function is given by

	(φ) = 〈Z(ψ ) · A(ψ )G(ψ − φ)〉ψ, (64)

and the linear stability is characterized by

−	′(0) = 〈Z(ψ ) · A(ψ )G′(ψ )〉ψ
= 〈A†(ψ )Z(ψ ) · G′(ψ )〉ψ

= −
〈

d

dψ
[A†(ψ )Z(ψ )] · G(ψ )

〉
ψ

, (65)

where the last expression is obtained by partial integration
using 2π -periodicity of A(ψ ), Z(ψ ), and G(ψ ).

Therefore, although we started from Eq. (60) with a gen-
eral drive-response coupling that depends on the past time
sequences of the oscillators, the linear stability can be repre-
sented only by the present phase values of the oscillators at the
lowest-order phase reduction. In the following subsections,
we consider the optimization of the response matrix A(ψ )
or the driving function G(ψ ), represented as functions of the
phase ψ .

B. Optimal response matrix

As for the first case, we optimize the response matrix
A(ψ ) as a function of the phase ψ , assuming that the driving
functional Ĝ is given. We introduce a constraint that the
squared Frobenius norm of A(ψ ) averaged over one period
of oscillation is fixed as 〈‖A(ψ )‖2〉

ψ
= P, and we consider

an optimization problem:

maximize − 	′(0) subject to 〈‖A(ψ )‖2〉ψ = P, (66)

where ‖A‖ =
√∑

i, j A2
i j represents the Frobenius norm of the

matrix A = (Ai j ). By defining an objective functional,

S{A, λ} = −	′(0) + λ(〈‖A(ψ )‖2〉ψ − P)

= 〈Z(ψ ) · A(ψ )G′(ψ )〉ψ + λ(〈‖A(ψ )‖2〉ψ − P),

(67)

where λ is a Lagrange multiplier, and by taking the functional
derivative with respect to each component, Ai j , of A, we

obtain the extremum condition. In this case,

δS

δAi j (ψ )
= 1

2π
Zi(ψ )G′

j (ψ ) + λ

π
Ai j (ψ ) = 0, (68)

and we obtain

Ai j (ψ ) = − 1

2λ
Zi(ψ )G′

j (ψ ), (69)

i.e.,

A(ψ ) = − 1

2λ
Z(ψ )G′(ψ )†, (70)

and the Lagrange multiplier is determined from the constraint,

〈‖A(ψ )‖2〉ψ = 1

4λ2
〈‖Z(ψ )G′(ψ )†‖2〉ψ = P (71)

as

λ = −
√

1

4P
〈‖Z(ψ )G′(ψ )†‖2〉ψ, (72)

where the negative sign is chosen so that −	′(0) > 0. The
maximum stability of the in-phase synchronized state is

−	′(0) =
√

P〈‖Z(ψ )G′(ψ )†‖2〉ψ. (73)

C. Optimal driving function

We can also seek the function G(ψ ) that provides the
optimal driving signal as a function of the phase ψ , assum-
ing that the response matrix Â is given. We constrain the
squared average of G(ψ ) over one period of oscillation as
〈|G(ψ )|2〉

ψ
= P, and we maximize the linear stability of the

in-phase state:

maximize − 	′(0) subject to 〈|G(ψ )|2〉ψ = P. (74)

We define an objective functional,

S{G, λ} = − 	′(0) + λ(〈|G(ψ )|2〉ψ − P)

= −
〈

d

dψ
[A†(ψ )Z(ψ )] · G(ψ )

〉
ψ

+ λ(〈|G(ψ )|2〉ψ − P), (75)

where λ is a Lagrange multiplier. From the extremum condi-
tion for S, we obtain

δS

δG(ψ )
= − 1

2π

d

dψ
[A†(ψ )Z(ψ )] + λ

π
G(ψ ) = 0 (76)

and the constraint on G. The optimal driving function is given
by

G(ψ ) = 1

2λ

d

dψ
[A†(ψ )Z(ψ )], (77)

where the Lagrange multiplier λ should be chosen to satisfy
the norm constraint,

1

4λ2

〈∣∣∣∣ d

dψ
[A†(ψ )Z(ψ )]

∣∣∣∣
2
〉

ψ

= P. (78)
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FIG. 6. Synchronization of Stuart-Landau oscillators with the optimal response matrix. (a) Evolution of the difference �x between the x
variables of the oscillators. (b) Evolution of the phase difference φ between the oscillators. DNSs of the original model vs the reduced model.

This yields

λ = −
√√√√ 1

4P

〈∣∣∣∣ d

dψ
[A†(ψ )Z(ψ )]

∣∣∣∣
2
〉

ψ

, (79)

where the negative sign is taken to satisfy 	′(0) < 0. The
maximum stability is

−	′(0) =
√√√√P

〈∣∣∣∣ d

dψ
[A†(ψ )Z(ψ )]

∣∣∣∣
2
〉

ψ

. (80)

D. Numerical examples

1. Optimal response matrix

As an example, we assume that the driving functional
Ĝ{X (t )} is simply given by Ĝ{X (t )} = X (t ), and we seek the
optimal response matrix A(ψ ) satisfying 〈‖A(ψ )‖2〉

ψ
= P.

For comparison, we also consider an identity response matrix,
AI = diag(

√
P/2,

√
P/2), normalized to satisfy 〈‖AI‖2〉

ψ
=

P. Note that both the x and y components are coupled, in
contrast to the previous section where only the x component
is coupled.

For the SL oscillator, the optimal response matrix can be
analytically expressed as

A(ψ ) =
√

P

1 + b2

(
sin ψ (b cos ψ + sin ψ ) − cos ψ (b cos ψ + sin ψ )

sin ψ (b sin ψ − cos ψ ) cos ψ (cos ψ − b sin ψ )

)
, (81)

and the phase coupling function is given by 	(φ) =
−

√
(1 + b2)P sin φ, which gives the optimal linear stability

−	′(0) =
√

(1 + b2)P. In contrast, for the identity matrix
AI , the phase coupling function is 	(φ) = −√

P/2(b cos φ +
sin φ) and the linear stability is −	′(0) = √

P/
√

2. Thus, the
linear stability is improved by a factor of

√
2(1 + b2).

Figure 6 shows synchronization of two SL oscillators for
the cases with the optimal response matrix A(ψ ) and with the
identity matrix AI (ψ ), where b = 1, ε = 0.01, P = 2, and the
initial phase difference is φ = π/4. Figure 6(a) shows the evo-
lution of the difference �x in the x variables between the two
oscillators, and Fig. 6(b) shows the convergence of the phase
difference φ to 0. The in-phase synchronized state is more
quickly established in the optimized case, and the results of
the reduced phase model and direct numerical simulations
agree well.

For the FHN oscillator, the optimal response matrix can
be calculated numerically. Figure 7 compares the synchro-
nization dynamics of two coupled FHN oscillators with the
optimal and identity response matrices, where ε = 0.0002,
P = 2, and the initial phase difference is φ = π/4. Figure 7(a)
shows four components of the optimal response matrix A(ψ )

for 0 � ψ < 2π . It is notable that the magnitude of A21(ψ )
is much larger than the other components, indicating that
driving the y component of each oscillator by using the x
component of the other oscillator is efficient in synchronizing
the oscillators in this case. Figure 7(b) plots the antisymmetric
part of the phase coupling functions for the optimal and
identity response matrices, which shows that a much higher
stability is attained in the optimized case [−	′(0) ≈ 10.1 for
the optimized response matrix and −	′(0) ≈ 0.999 for the
identity response matrix].

Figure 7(c) shows the time evolution of the difference
�x between the two oscillators, and Fig. 7(d) shows the
convergence of the phase difference φ to 0. To use the optimal
response matrix, instantaneous phase values of the oscillators
are necessary. In the direct numerical simulations shown here,
we approximately evaluated the phase value by linearly inter-
polating two consecutive crossings times of the oscillator state
at an appropriate Poincaré section, and this value was used to
generate the driving signal. It can be seen from the figures that
the in-phase synchronized state is established much faster in
the optimized case, and the results of the reduced phase model
and direct numerical simulations agree well.
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(a) (b)
identity
optimal

(c)
identity
optimal (d) identity(phase)

identity(DNS)
optimal(phase)
optimal(DNS)

FIG. 7. Synchronization of FitzHugh-Nagumo oscillators with the optimal response matrix. In (b)–(d), the results with the optimal response
matrix are compared with those with the identity response matrix. (a) Four components of the optimal response matrix A(ψ ). (b) Antisymmetric
part of the phase coupling function, 	(φ) − 	(−φ). (c) Evolution of the difference �x between the x variables of the oscillators. (d) Evolution
of the phase difference φ between the oscillators. DNSs of the original model vs the reduced model.

2. Optimal driving function

For the numerical simulations, we assume that Â{X (t )} is
simply given by an identity matrix, diag(1, 1). The optimal
driving function G(ψ ) is then simply given as G(ψ ) ∝ Z′(ψ )
from Eq. (77), with the norm constraint 〈|G(ψ )|2〉ψ = P. For
the SL oscillator, the optimal driving function is explicitly
given by

G(ψ ) =
√

P

1 + b2

(
cos ψ − b sin ψ

b cos ψ + sin ψ

)
. (82)

Figure 8 shows synchronization of two SL oscillators coupled
through the optimal driving function, and coupled without

transformation of the oscillator state, i.e., Ĝ{X (t )} = X (t ),
where b = 1, ε = 0.01, and P = 1, and the initial phase
difference is φ = π/4. Figure 8(a) shows the evolution of the
difference �x between the x variables of the two oscillators,
and Fig. 8(b) shows the convergence of the phase difference φ

to 0. It is confirmed that the linear stability of the in-phase
synchronized state is improved in the optimized case, and
the results of the reduced phase model and direct numerical
simulations agree well.

For the FHN oscillator, the norm of X 0(ψ ) is
〈|X 0(ψ )|2〉ψ ≈ 0.221, and we fix the norm P of G(ψ ) to
this value. The optimal driving function can be calculated

(a)

Δ

t

(b)

φ

t

no transform
no transform(DNS)

optimal (phase)

optimal (DNS)

no transform(phase)

optimal 

FIG. 8. Synchronization of Stuart-Landau oscillators coupled with the optimal driving function. (a) Evolution of the difference �x between
the x variables of the oscillators. (b) Evolution of the phase difference φ between the oscillators. DNSs of the original model vs the reduced
model.
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(a) (b)
no transform
optimal

(c)
no transform
optimal (d) no transform(phase)

no transform(DNS)
optimal(phase)
optimal(DNS)

FIG. 9. Synchronization of FitzHugh-Nagumo oscillators coupled with the optimal driving function. In (b)–(d), the results with the optimal
driving function are compared with those without transformation. (a) Optimal driving function G(ψ ) = (G1(ψ ), G2(ψ ))†. (b) Antisymmetric
part of the phase coupling function, 	(φ) − 	(−φ). (c) Evolution of the difference �x between the x variables of the oscillators. (d) Evolution
of the phase difference φ. DNSs of the original model vs the reduced model.

from X 0(ψ ) and Z(ψ ) obtained numerically. Figure 9 shows
synchronization of two FHN oscillators coupled with the
optimal driving function, as well as a comparison with
the nontransformed case, where ε = 0.0002, P ≈ 0.221,
and the initial phase difference is φ = π/4. Figure 9(a)
shows the optimal driving function G(ψ ) for 0 � ψ < 2π ,
which is proportional to the derivative Z′(ψ ). Figure 9(b)
plots the antisymmetric part of the phase coupling function
for the optimal driving function G(ψ ) with and without
transformation, respectively, indicating a much higher linear
stability in the optimized case [−	′(0) ≈ 12.8 with the
optimized driving function and −	′(0) ≈ 0.999 without
optimization].

Figure 9(c) shows a plot of the evolution of the difference
�x between x variables of the oscillators, and Fig. 9(d) shows
the convergence of the phase difference φ to 0. Similar to the
previous case with the optimal response matrix, instantaneous
phase values of the oscillators are approximately evaluated by
linear interpolation and used to generate the optimal driving
signal in the direct numerical simulations. We can confirm that
the in-phase synchronized state is established much faster in
the optimized case, and the results of the reduced phase model
and direct numerical simulations agree well.

V. DISCUSSION

We have shown that by optimizing the mutual coupling
between coupled oscillators, the linear stability of the in-phase
synchronized state can be improved, and faster convergence

to the synchronization can be achieved. We have shown that,
even if we start from a system of coupled oscillators with
general coupling functionals that depend on the past time
sequences of the oscillators, the system can be approximately
reduced to a pair of simple ordinary differential equations that
depend only on the present phase values of the oscillators
within the phase-reduction theory, and the optimal coupling
function between the oscillators can be obtained as a function
of the phase values. Though we have considered only the
simplest cases in which two oscillators with identical proper-
ties are symmetrically coupled without noise, the theory can
also be extended to include heterogeneity of the oscillators or
noise.

The linear coupling with time delay or linear filtering
can be realized without measuring the phase values of the
oscillator once the correlation functions of the PSF and
the limit-cycle orbit (or their derivatives) are obtained. The
nonlinear coupling requires the measurement of the phase
values of the oscillators, but it can further improve the linear
stability of the synchronized state. We have shown that a
simple approximate evaluation of the phase values by a linear
interpolation gives reasonable results even though it may yield
a somewhat incorrect evaluation of the true phase values.

It is interesting to compare the present analysis for stable
synchronization between the two oscillators with the opti-
mization of driving signals for injection locking of a single
oscillator, which has been analyzed by Zlotnik et al. [24] and
others (briefly explained in Appendix B for a simple case). In
Sec. IV C, we have obtained the optimal driving function. In
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particular, when A(ψ ) = K, where K is a constant matrix, the
optimal driving signal is

G(ψ ) = 1

2λ
K†Z′(ψ ) (83)

and the maximum stability is

−	′(0) =
√

P〈|K†Z′(ψ )|2〉ψ. (84)

This result coincides with the optimal injection signal for sta-
ble synchronization of a single oscillator, obtained by Zlotnik
et al. [24]. Thus, the optimal coupling between the oscillators
is realized by measuring the present phase ψ of the other
oscillator and applying a driving signal that is proportional
to K†Z′(ψ ) to the oscillator.

It is also interesting to note that we have obtained sim-
ilar expressions for the maximum stability in all examples,
−	′(0) =

√
P〈 · · · 〉2

ψ , where · · · depends on the quantity to
be optimized. This is because we are essentially maximizing
the inner product of the PSF with the derivative of the driving
signal under a mean-square constraint on the parameters or
functions included in the driving signal in all cases.

The linear coupling schemes in Sec. III would be easy
to realize experimentally. The nonlinear coupling schemes in
Sec. IV require an evaluation of the phase values from the
oscillators, but they can yield an even higher linear stability.
These methods may be useful when higher stability of the
in-phase synchronized state between oscillators is desirable in
technical applications. It would also be interesting to study
interactions between rhythmic elements, e.g., in biological
systems from the viewpoint of synchronization efficiency.
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APPENDIX A: MODELS WITH SELF COUPLING

We show here that the inclusion of self-coupling terms in
the model does not alter the linear stability of the in-phase
synchronized state under the phase-reduction approximation.
Suppose that we have additional self-coupling terms in the
model as

Ẋ 1 = F(X 1) + ε
[
Ĥ

{
X (t )

1 , X (t )
2

} + Î
{
X (t )

1

}]
,

Ẋ 2 = F(X 2) + ε
[
Ĥ

{
X (t )

2 , X (t )
1

} + Î
{
X (t )

2

}]
, (A1)

where Î{X (t )} is a functional representing self-coupling. A
typical example is coupled oscillators with linear diffusive
coupling,

Ẋ 1 =F(X 1) + ε(X 2 − X 1),

Ẋ 2 =F(X 2) + ε(X 1 − X 2), (A2)

where we may take Ĥ{X (t )
1 , X (t )

2 } = X 2(t ) and Î{X (t )
1 } =

−X 1(t ). By phase reduction, we obtain the phase equations

θ̇1 = ω + εZ(θ1) · [H (θ1, θ2) + I(θ1)],

θ̇2 = ω + εZ(θ2) · [H (θ2, θ1) + I(θ2)], (A3)

and the phase coupling function

	̃(φ) = 〈Z(ψ ) · [H (ψ,ψ − φ) + I(ψ )]〉ψ
= 	(φ) + 〈Z(ψ ) · I(ψ )〉ψ, (A4)

where 	(φ) is the phase coupling function for the case without
the self-coupling term, and the second term is a constant.
Thus, this model also has the in-phase synchronized state as a
fixed point, and its linear stability is equal to the case without
the self-coupling term,

−ε	′(0) = −ε	̃′(0). (A5)

APPENDIX B: OPTIMAL SIGNAL FOR INJECTION
LOCKING

In this Appendix, we briefly review the result of Zlotnik
et al. [24] on the optimal driving signal for injection locking
for a simple case. We consider a limit-cycle oscillator driven
by a periodic driving signal whose period is the same as the
natural period T of the oscillator,

Ẋ = F(X ) + εK f (t ), f (t ) = f (t + T ), (B1)

where X is the oscillator state, F(X ) represents its dynamics,
and εK f (t ) is a weak periodic driving signal, where ε is a
small positive parameter, and a constant matrix K ∈ RN×N

represents which components of X are driven by f (t ).
By phase reduction, we obtain a phase equation

θ̇ = ω + Z(θ ) · K f (t ) (B2)

for the oscillator phase θ , where Z(θ ) is the PSF. Defining
θ − ωt = φ and averaging over one oscillation period yields

φ̇ = 	(φ). (B3)

The phase coupling function 	(ψ ) is expressed as

	(φ) = 1

2π

∫ 2π

0
Z(φ + ψ ) · K f (ψ/ω)dψ

= 1

2π

∫ 2π

0
Z(φ + ψ ) · K f̃ (ψ )dψ

= 〈Z(φ + ψ ) · K f̃ (ψ )〉ψ, (B4)

where we have defined f̃ (ψ ) = f (ψ/ω).
By choosing the origin of the phase of the periodic signal

so that 	(0) = 0 holds, the oscillator synchronizes with the
periodic signal at φ = 0, and the linear stability of this syn-
chronized state is given by

	′(0) = 〈Z′(ψ ) · K f̃ (ψ )〉ψ
= 〈K†Z′(ψ ) · f̃ (ψ )〉ψ. (B5)

We constrain the one-period average of f̃ (ψ ) as

〈| f̃ (ψ )|2〉ψ = P, (B6)

and we consider an objective function

S{ f̃ , λ} = −	′(0) + λ(〈| f̃ (ψ )|2〉ψ − P)

= −〈K†Z′(ψ ) · f̃ (ψ )〉ψ + λ(〈| f̃ (ψ )|2〉ψ − P), (B7)
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where λ is a Lagrange multiplier. Extremum conditions are
given by

δS

δ f̃ (ψ )
= − 1

2π
K†Z′(ψ ) + λ

π
f̃ (ψ ) = 0, (B8)

∂S

∂λ
= 〈| f̃ (ψ )|2〉ψ − P = 0. (B9)

The optimal driving signal is given by

f̃ (ψ ) = 1

2λ
K†Z′(ψ ) (B10)

and the constraint is

1

4λ2
〈|K†Z′(ψ )|2〉ψ = P, (B11)

which yields

λ = −
√

1

4P
〈|K†Z′(ψ )|2〉ψ, (B12)

where the negative sign should be taken in order that 	′(0) <

0. Thus, the optimal driving signal is given by

f̃ (ψ ) = −
√

P

〈|K†Z′(ψ )|2〉ψ
K†Z′(ψ ) (B13)

and the maximum linear stability is given by

−	′(0) = −〈K†Z′(ψ ) · f̃ (ψ )〉ψ =
√

P〈|K†Z′(ψ )|2〉ψ.

(B14)
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