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Abstract: Nonlinear oscillators driven by correlated noisy signals can synchronize without di-
rect mutual interactions. Here we show that correlation between noisy signals can be enhanced
by applying a threshold filter, and the filtered signals can be used to improve noise-induced
synchronization. We derive analytical expressions for the correlation coefficient between the
filtered signals, and, using simple examples, we demonstrate that the correlation can actually
be enhanced and the synchronization can be improved by the threshold filtering in some cases.
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1. Introduction
When nonlinear oscillators are driven by common or correlated noisy signals, they can mutually
synchronize even in the absence of periodic driving signals or direct mutual interactions. This phe-
nomenon, called the noise-induced synchronization or stochastic synchronization, has widely been
observed in various experimental systems, e.g., in spiking neurons, electric circuits, and lasers [1–
3]. Synchronous behavior of certain neurophysiological systems, such as olfactory bulb neurons and
spinal motor neurons [4, 5], and that of certain ecological systems, such as synchronized masting
of plants and synchronous variations of ecological populations [6], are also considered to be caused
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by correlated biological or environmental fluctuations. Engineering applications of the mechanism
of noise-induced synchronization for high-speed integrated circuits and communication systems have
also been attempted recently [7, 8]. See Fig. 1 for a numerical illustration of the noise-induced syn-
chronization between two phase oscillators driven by correlated noisy signals measured by acceleration
sensors on a train.

Fig. 1. Noise-induced synchronization of nonlinear oscillators driven by cor-
related noisy signals measured by acceleration sensors of two iPads placed
nearby on the shelf of a train running along the Japan Railway Yamanote loop
in Tokyo. The data are sampled with an interval of 10 milliseconds during one
cycle of the train around the loop (about 35 kilometers, 3636 seconds). The
measured noisy signals are appropriately normalized and used to drive a pair
of phase oscillators described by Eq. (17) with ω = 0.6 and Z(θ) = 5 sin θ. (a)
Typical time series of the noisy signals. (b) Evolution of the phase difference.

Key studies on the noise-induced synchronization of limit-cycle oscillators were carried out by
Teramae and Tanaka [9], and by Goldobin and Pikovsky [10], who analytically showed, by using
the phase-reduction method [11], that two identical limit-cycle oscillators driven by common weak
Gaussian-white noise always synchronize with each other, except for some special cases. Their results
have later been extended to limit-cycle oscillators driven by non-white noise with general power
spectra and probability densities [12]. Also, global characterization of the synchronization properties
using stationary probability densities of the phase differences between the oscillators was performed
on the basis of the effective Fokker-Planck equation [13, 14]. Generally, the degree of synchronization
is improved as the noise correlation becomes stronger.

In real-world systems, however, two noisy signals can never be identical even if they are measured
at spatially adjacent locations. Thus, if synchronization of some oscillatory systems are induced by
noise, the quality of synchronization depends on the correlation between the noisy signals. Moreover,
if some biological systems utilize environmental noise for synchronization, they may pre-process the
incoming noise before driving their internal clocks to improve synchrony. It is thus interesting to
consider how the correlation between two noisy signals can be enhanced for synchronization.

In this paper, we show that a simple threshold filter can enhance the correlation between two
noisy signals and improve noise-induced synchronization in some situations. We derive an analytical
expression for the correlation coefficient of two noisy signals transformed by the threshold filter, and
use it to predict stationary distributions of the phase differences between two limit-cycle oscillators
driven by the filtered noise.

2. Enhancement of noise correlation
Let us consider two noisy signals s1(t) and s2(t), which are correlated but not identical. We assume
that s1(t) and s2(t) are mixtures of a common component ξ(t) and two independent components of
equal intensity η1,2(t) given by

s1(t) = ξ(t) + η1(t),

s2(t) = ξ(t) + η2(t). (1)
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Here, ξ(t) and η1,2(t) are assumed to be stationary, uncorrelated noisy signals of mean values μξ, μη
and variance σ2

ξ , σ
2
η as follows:

μξ = E[ξ(t)], μη = E[η1,2(t)], σ2
ξ = E[(ξ(t) − μξ)2], σ2

η = E[(η1,2(t) − μη)2], (2)

E[(ξ(t) − μξ)(η1,2(t) − μη)] = E[(η1(t) − μη)(η2(t) − μη)] = 0. (3)

We also assume that η1(t) and η2(t) obey the same probability distribution (see Appendix E for a
discussion). As long as the correlation times of ξ(t) and η1,2(t) are finite, autocorrelation functions of
ξ(t) and η1,2(t) can be chosen arbitrarily in the following argument.

Fig. 2. Probability density functions of the common noisy signals used as
examples for the calculation of correlation coefficients.

To enhance the correlation between the noisy signals s1(t) and s2(t), we introduce a simple threshold
filter Θ(s) and generate new noisy signals s̃1(t) and s̃2(t) as follows:

s̃i(t) = Θ(si(t)) =

{
1 (si(t) ≥ h),
−1 (si(t) < h),

(4)

for i = 1, 2, where h represents the threshold value. The correlation coefficient ρ between the original
raw signals s1(t) and s2(t) is defined as

ρ =
E
[(
s1(t) −E[s1(t)]

)(
s2(t) − E[s2(t)]

)]
√
E
[(
s1(t) − E[s1(t)]

)2]√
E
[(
s2(t) −E[s2(t)]

)2] (5)

and can explicitly be calculated as

ρ =
σ2
ξ

σ2
ξ + σ2

η

. (6)
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Similarly, the correlation coefficient ρ̃ between the filtered signals s̃1(t) and s̃2(t) is defined as

ρ̃ =
E
[(
s̃1(t) − E[s̃1(t)]

)(
s̃2(t) − E[s̃2(t)]

)]
√
E
[(
s̃1(t) − E[s̃1(t)]

)2]√
E
[(
s̃2(t) − E[s̃2(t)]

)2] . (7)

Denoting the probability density function (PDF) of the common noise ξ(t) as pξ(ξ), the PDF of the
independent noise η1,2(t) as pη(η1,2), and the cumulative density function (CDF) of the independent
noise η1,2(t) as Φη(η) =

∫ η
−∞ pη(η′)dη′, respectively, we can explicitly calculate ρ̃ as (see Appendix A

for the derivation)

ρ̃ =

∫ +∞
−∞ Φ2

η(u− h)pξ(u)du− { ∫ +∞
−∞ Φη(u− h)pξ(u)du

}2

∫ +∞
−∞ Φη(u− h)pξ(u)du− { ∫ +∞

−∞ Φη(u− h)pξ(u)du
}2 . (8)

Thus, ρ̃ is determined from the PDF pξ of the common noise and the CDF Φη of the independent
noise, and depends on the threshold value h.

Without loss of generality, we can assume that the independent noise is zero-mean (μη = 0).
Then, we can obtain the following approximation of the filtered correlation coefficient, which is valid
when the independent noise is sufficiently weaker than the common noise (see Appendix B for the
derivation):

ρ̃ = 1 − pξ(h)
∫∞
−∞ Φη(u){1 − Φη(u)}du
Φξ(h)(1 − Φξ(h))

+O
(
Φ′′
ξ (h)σ

2
η

)
. (9)

Moreover, if the independent noise is Gaussian, we can express ρ̃ as

ρ̃ = 1 − σηpξ(h)√
πΦξ(h)(1 − Φξ(h))

+O
(
Φ′′
ξ (h)σ

2
η

)
. (10)

These approximate expressions can be used in choosing the appropriate threshold value h.
As examples, we consider the following 4 types of PDFs (a Gaussian distribution, two types of

Gaussian mixtures, and a quadratic bimodal distribution) shown in Fig. 2:

p
(1)
ξ (ξ) = G(ξ; 0, 1), (11)

p
(2)
ξ (ξ) = 0.5G(ξ;−2, 0.5) + 0.25G(ξ; 1.5, 0.1) + 0.25G(ξ; 2.5, 0.7), (12)

p
(3)
ξ (ξ) = 0.5G(ξ;−2, 0.1) + 0.5G(ξ; 2, 0.1), (13)

p
(4)
ξ (ξ) =

3x2

2
(−1 < x < 1) and 0 (otherwise), (14)

where

G(u; a, b) =
1√
2πb

exp
[
−(u− a)2

2b2

]
(15)

represents a Gaussian distribution of mean a and standard deviation b. The independent noise is also
assumed to be Gaussian-distributed with mean 0 and standard deviation ση as

pη(η) = G(η; 0, ση). (16)

Figure 3 shows the correlation coefficients ρ and ρ̃ of the raw and filtered noisy signals obeying the
above 4 types of the probability distributions. The standard deviation of the independent noise is fixed
at ση = 0.2, and ρ, ρ̃ are plotted as functions of the threshold value h. For the Gaussian distribution,
no enhancement in correlation occurs by the application of the threshold filter (Figs. 3(a,b)); the
filtered correlation ρ̃ is always smaller than the raw correlation ρ (see Appendix D for a discussion).
For the two types of Gaussian mixtures, the threshold filter slightly increases the correlation (ρ̃ > ρ)
in a range of the threshold value h (Figs. 3(c,d) and (e,f)). For the quadratic bimodal distribution, the
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Fig. 3. Correlation coefficients ρ and ρ̃. The standard deviation of the inde-
pendent noise is fixed at ση = 0.2, and the threshold value h is varied. The
red lines show the correlation ρ of the raw signals, the blue curves show the
correlation ρ̃ of the filtered signals, and blue dots show the approximation to
ρ̃ for weak independent Gaussian noise.

correlation is visibly enhanced (ρ̃ > ρ) by the threshold filter when |h| is relatively small (Figs. 3(g,h)),
and takes a maximum value at h = 0. As |h| increases, the filtered correlation ρ̃ quickly decreases
and becomes lower than the raw correlation ρ.
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Fig. 4. Correlation coefficients ρ and ρ̃. The threshold value is fixed at
h = 0, and the standard deviation of the independent noise ση is varied. The
red curves show the correlation ρ of the raw signals, the blue curves show the
correlation ρ̃ of the filtered signals, and blue dots show the approximation to
ρ̃ for weak independent Gaussian noise.

Figure 4 shows the correlation coefficients ρ and ρ̃ of the raw and filtered noisy signals as functions
of the standard deviation of the independent noise ση, where the threshold value h is fixed at 0.
Both the raw correlation ρ and filtered correlation ρ̃ are decreasing functions of ση. For the Gaussian
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distribution, no enhancement in correlation is observed in the entire range of the standard deviation
ση (Figs. 4(a,b)); the filtered correlation ρ̃ is always smaller than the raw correlation ρ (ρ̃ < ρ). For
the two types of Gaussian mixtures, the filtered correlation ρ̃ is larger than the raw correlation ρ when
ση is smaller than a certain critical value (Figs. 4(c,d) and (e,f)). The enhancement of correlation
increases with ση, and the maximum enhancement is attained around ση ≈ 1. When ση is further
increased, ρ̃ quickly decreases and becomes smaller than ρ. Similarly, for the quadratic bimodal
distribution, the correlation is enhanced for ση between 0 and a certain critical value around 0.5
(Figs. 4(g,h)). As ση is increased further, the filtered correlation ρ̃ quickly decreases and becomes
lower than the raw correlation ρ. The approximation formula for weak Gaussian independent noise
is valid for relatively small ση, but the deviation becomes larger as ση is increased.

Thus, we have observed that the threshold filter can enhance the correlation between noisy signals
in some cases, where the noisy signals have a common non-Gaussian component. In the next section,
we use the filtered noisy signals for noise-induced synchronization of limit-cycle oscillators and show
that the synchrony can be improved.

3. Noise-induced synchronization
We consider a pair of identical limit-cycle oscillators driven by weak correlated noisy signals, which
can be described by the following phase Langevin equations [9, 12–14]:

θ̇1(t) = ω + Z(θ1)s1(t),

θ̇2(t) = ω + Z(θ2)s2(t), (17)

where θ1,2 are the phase variables of the oscillators, ω is a natural frequency of the oscillators, Z(θ)
is a phase sensitivity function [11] quantifying the phase response of the oscillator to infinitesimal
perturbations, and s1,2(t) are the mutually correlated noisy signals with correlation coefficient ρ given
by Eq. (1). Under mild conditions, it can be shown that the phase difference ψ = θ1 − θ2 between the
two oscillators shrinks to ψ = 0 on average and distributes around ψ = 0. Namely, the two oscillators
tend to synchronize with each other statistically, though they are subject to occasional phase slips
caused by the independent components of the noisy signals.

As shown in [14], synchrony between the oscillators may not always be improved even if the corre-
lation coefficient ρ between the noisy signals is increased. However, using the results of [14], it can
be shown that, when all ξ(t), η1(t), η2(t) have the same power spectrum (or the same autocorrela-
tion function), the stationary PDF q(ψ) of the phase difference ψ can be expressed using the noise
correlation ρ as

q(ψ) =
N

g(0) − ρg(ψ)
, (18)

where N is a normalization constant, and the function g(ψ) is a function defined by

g(ψ) =
+∞∑
�=−∞

|Z�|2P (
ω)ei�ψ, (19)

where Z� ∈ C is the 
-th Fourier coefficient of Z(θ) and P (Ω) is the power spectrum of ξ(t) and
η1,2(t). As shown in Fig. 5, the PDF q(ψ) given by Eq. (18) generally has a peak at ψ = 0 when the
correlation coefficient ρ is sufficiently large, indicating that the phase difference distributes around
ψ = 0, i.e., the two oscillators are stochastically synchronized. Our interest is if the peak becomes
more pronounced when the filtered noisy signals s̃1,2 are used in place of the raw noisy signals s1,2 in
Eq. (17), which is expected to occur when ρ̃ > ρ from Eq. (18) (note that 0 ≤ ρ, ρ̃ ≤ 1).

We performed numerical simulations of the phase model (17) using the raw noisy signals s1,2 and
the filtered noisy signals s̃1,2, where the common component ξ(t) obeys either of the Gaussian mixture
2 and the quadratic bimodal distribution (see Appendix C for numerical generation of the noise). The
autocorrelation function of each noise is given by
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Fig. 5. Stationary probability density functions of the phase difference be-
tween two oscillators driven by correlated noisy signals. Solid curves show
the results of the theory, and circles show the results of numerical simulations.
Red curves are obtained for raw noisy signals without filtering, and blue curves
show the results for filtered noisy signals. (a,b) Gaussian mixture 2 and ση = 1.
(c,d) Quadratic bimodal distribution and ση = 0.3. (a,c) Z(1)(θ). (b,d) Z(2)(θ).
The raw and filtered correlations ρ, ρ̃ between the noisy signals and the order
parameters R1, R2 calculated from q(ψ) are (a) ρ = 0.80, ρ̃ = 0.91, R1 = 0.50,
R2 = 0.25, R̃1 = 0.64, R̃2 = 0.41, (b) ρ = 0.80, ρ̃ = 0.91, R1 = 0.07, R2 = 0.47,
R̃1 = 0.14, R̃2 = 0.60, (c) ρ = 0.87, ρ̃ = 0.92, R1 = 0.58, R2 = 0.34, R̃1 = 0.67,
R̃2 = 0.45, (d) ρ = 0.87, ρ̃ = 0.92, R1 = 0.10, R2 = 0.55, R̃1 = 0.16, R̃2 = 0.62.

C(t) = E
[(
f(k) −E[f(k)]

)2](1 − |t|
δt

)
(−δt < t < δt), 0 (otherwise), (20)

where δt = 0.1 and f(k) (k = 1, 2, 3, ..., N) is an uncorrelated noisy time sequence drawn independently
from a given probability distribution. The corresponding power spectrum P (Ω) is given by

P (Ω) =
∫ ∞

−∞
C(t)e−iΩtdt = E

[(
f(k) − E[f(k)]

)2]2 − 2 cos(Ωδt)
Ω2δt

. (21)

For each distribution of the common noise, numerical and theoretical results are plotted in Figs. 2(a,b)
and Figs. 2(c,d), respectively. For each case, the independent noise is assumed to obey Gaussian
distribution of standard deviation ση = 1.0 [Figs. 5(a,b)] and ση = 0.3 [Figs. 5(c,d)]. The natural
frequency is fixed at ω = 1, and the following two types of the phase sensitivity functions are used:

Z(1)(θ) = 0.1 sin θ, (22)

Z(2)(θ) = 0.02 sin θ + 0.1 sin 2θ. (23)

The threshold value h is chosen so that maximum enhancement in correlation is attained, i.e., h = 0
for both the Gaussian mixture 2 and the quadratic bimodal distribution, which are estimated from
Fig. 3. In general, we can use the expression of ρ̃ given in Eqs. (8), (9), and (10) to find the optimal
value of h when the PDFs pξ(ξ) and pη(ηi) of the common and independent components are given.
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As can be seen from Fig. 5, the distribution q(ψ) of the phase difference has a higher and narrower
peak when the filtered noisy signals s̃1,2 are used in place of the raw noisy signals s1,2. Thus, the
application of the threshold filter to the raw noisy signals can actually improve synchrony of limit-
cycle oscillators driven by correlated noise for the above two types of the noise distributions. The
results of numerical simulations agree well with the theory [Eq. (18)].

To quantify the degree of synchronization, we calculate the order parameters

Rk =
∣∣∣∣
∫ π

−π
eikψq(ψ)dψ

∣∣∣∣ (k = 1, 2) (24)

from the stationary PDF q(ψ) of the phase difference of the two oscillators driven by the noisy signals
before and after threshold filtering (the filtered values are denoted as R̃1, R̃2). When the oscillators
are completely desynchronized, q(ψ) = (2π)−1, the order parameters take R1 = R2 = 0, and when the
oscillators are completely synchronized, q(ψ) = δ(ψ), R1 = R2 = 1. The parameter R2 also quantifies
the secondary peaks at ψ = ±π of the distribution, i.e., noise-induced anti-phase synchronization of
the oscillators caused by the second-order harmonic component in Z(θ), as shown in Figs. 5(b) and
(d). The actual values of R1 and R2 calculated from the stationary PDF of the phase difference are
shown in the caption of Fig. 5.

4. Summary

We showed that a simple threshold filter can enhance correlation between noisy signals and improve
noise-induced synchronization between a pair of limit-cycle oscillators for several types of noise. We
derived the correlation coefficient between the filtered noisy signals, and showed that the correlation
can be enhanced for several types of noise distributions. We also observed that the threshold filter does
not enhance the correlation but rather diminish it for the Gaussian noise. Actually, the correlation
appears to be diminished for a large class of unimodal noise PDFs by the threshold filter, implying
that the threshold filter may not be a good candidate for robust enhancement of noise correlation.
Though we considered only the simplest threshold filter in this study, more general nonlinear filtering
methods may produce more correlated noise appropriate for noise-induced synchronization.

Recently, synchronization of heterogeneous oscillators with different phase sensitivity functions
driven by correlated noisy signals has been studied in [15]. It is reported that heterogeneous oscillator
pairs can synchronize better than homogeneous pairs possessing the same phase sensitivity functions
when the noise correlation is weak. Though the considered physical situations are different, this
result can be relevant to our problem, as it suggests another possibility of improving synchronization
induced by correlated noise. Incorporating the effect of oscillator heterogeneity into our problem
setting should also be important for practical applications.
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Appendix

A. Derivation of Eq. (8)
Here, we derive the expression of ρ̃ in Eq. (8). From Eq. (7), ρ̃ can be written as follows:

ρ̃ =
E[s̃1(t)s̃2(t)] − E[s̃1(t)]E[s̃2(t)]
E[{s̃1,2(t)}2] − E[s̃1,2(t)]2

, (A-1)

To evaluate Eq. (A-1), we calculate E[s̃1,2(t)], E[{s̃1,2(t)}2], and E[s̃1(t)s̃2(t)]. First, the mean E[s̃i(t)]
(i = 1, 2) can be calculated as
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E[s̃i] = prob.(si ≥ h) · 1 + prob.(si < h) · (−1)

= prob.(ξ + ηi ≥ h) − prob.(ξ + ηi < h)

=
∫

prob.(ξ + ηi ≥ h | ξ)pξ(ξ)dξ −
∫

prob.(ξ + ηi < h | ξ)pξ(ξ)dξ

=
∫

prob.(ηi ≥ h− ξ | ξ)pξ(ξ)dξ −
∫

prob.(ηi < h− ξ | ξ)pξ(ξ)dξ

=
∫
{1 − Φη(h− ξ)}pξ(ξ)dξ −

∫
Φη(h− ξ)pξ(ξ)dξ = 1 − 2

∫
Φη(h− ξ)pξ(ξ)dξ, (A-2)

where prob.(· | ξ) indicates conditional probability with fixed ξ. Meanwhile, E[s̃1(t)s̃2(t)] in the
numerator can be expressed as

E[s̃1s̃2] = prob.(s1 ≥ h, s2 ≥ h) · 1 · 1
+ prob.(s1 ≥ h, s2 < h) · 1 · (−1)

+ prob.(s1 < h, s2 ≥ h) · (−1) · 1
+ prob.(s1 < −h, s2 < h) · (−1) · (−1). (A-3)

The first term can be calculated as

prob.(s1 = ξ + η1 ≥ h, s2 = ξ + η2 ≥ h)

=
∫

prob.(ξ + η1 ≥ h, ξ + η2 ≥ h | ξ) pξ(ξ) dξ

=
∫

prob.(ξ + η1 ≥ h | ξ) prob.(ξ + η2 ≥ h | ξ) pξ(ξ) dξ

=
∫

prob.(η1 ≥ h− ξ | ξ) prob.(η2 ≥ h− ξ | ξ) pξ(ξ) dξ

=
∫
{1 − Φη(h− ξ)}2 pξ(ξ) dξ, (A-4)

where the relation

prob.(η1,2 ≥ h− ξ | ξ) = 1 − prob.(η1,2 ≤ h− ξ | ξ) = 1 − Φη(h− ξ) (A-5)

is used. The other terms can also be calculated as

prob.(s1 = ξ + η1 ≥ h, s2 = ξ + η2 < h)

=
∫

prob.(η1 ≥ h− ξ | ξ) prob.(η2 < h− ξ | ξ) pξ(ξ) dξ

=
∫
{1 − Φη(h− ξ)}Φη(h− ξ) pξ(ξ) dξ, (A-6)

prob.(s1 = ξ + η1 < h, s2 = ξ + η2 ≥ h)

=
∫

prob.(η1 < h− ξ | ξ) prob.(η2 ≥ h− ξ | ξ) pξ(ξ) dξ

=
∫

Φη(h− ξ){1 − Φη(h− ξ)} pξ(ξ) dξ, (A-7)

and

prob.(s1 = ξ + η1 < h, s2 = ξ + η2 < h)

=
∫

prob.(η1 < h− ξ | ξ) prob.(η2 < h− ξ | ξ) pξ(ξ) dξ

=
∫

Φη(h− ξ)2 pξ(ξ) dξ, (A-8)
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which yields

E[s̃1s̃2] =
∫
{1 − 2Φη(h− ξ)}2pξ(ξ)dξ. (A-9)

Similarly, E[{s̃1,2}2] in the denominator can be calculated as

E[s̃2i ] =prob.(si ≥ h) · 12 + prob.(si < h) · (−1)2 = 1 (A-10)

for i = 1, 2. Plugging Eqs. (A-2), (A-9), and (A-10) into Eq. (A-1), we obtain Eq. (8).

B. Derivation of Eqs. (9) and (10)
Here, we derive the approximate expressions of ρ̃ in Eqs. (9) and (10). For this purpose, we show that
the following approximation hold:∫ ∞

−∞
Φη(u− h)pξ(u)du = 1 − Φξ(h) +O

(
Φ′′
ξ (h)σ

2
η

)
, (B-1)∫ ∞

−∞
Φ2
η(u− h)pξ(u)du = 1 − Φξ(h) − pξ(h)

∫ ∞

−∞
Φη(u){1 − Φη(u)}du+O

(
Φ′′
ξ (h)σ

2
η

)
. (B-2)

We first derive Eq. (B-1). By partial integration, the left-hand side can be transformed as
∫ ∞

−∞
Φη(u− h)pξ(u)du = 1 −

∫ ∞

−∞
pη(u− h)Φξ(u)du, (B-3)

where Φξ(u) is a CDF of pξ(u). Expanding Φξ(u) in a Taylor series around u = h and ignoring the
second and higher-order terms, we can rewrite the right-hand side of Eq. (B-3) as

1 −
∫ ∞

−∞
pη(u− h)

{
Φξ(h) + Φ′

ξ(h)(u− h) +O
(
Φ′′
ξ (h)(u− h)2

)}
du

= 1 − Φξ(h)
∫ ∞

−∞
pη(u− h)du− Φ′

ξ(h)
∫ ∞

−∞
(u− h)pη(u− h)du

+O

(
Φ′′
ξ (h)

∫ ∞

−∞
(u− h)2pη(u− h)du

)
= 1 − Φξ(h) +O

[(
Φ′′
ξ (h)σ

2
η

)]
, (B-4)

where we used the assumption that the independent noise is zero mean. We next derive Eq. (B-2).
By partial integration, the left-hand side can be transformed as∫ ∞

−∞
Φ2
η(u− h)pξ(u)du = 1 − 2

∫ ∞

−∞
pη(u− h)Φη(u− h)Φξ(u)du. (B-5)

By expanding Φξ(u) in a Taylor series around u = h and ignoring the second and higher-order terms,
we can rewrite the right-hand side of Eq. (B-5) as

1 − 2
∫ ∞

−∞
pη(u− h)Φη(u− h)

{
Φξ(h) + Φ′

ξ(h)(u− h) +O
(
Φ′′
ξ (h)(u− h)2

)}
du

= 1 − 2Φξ(h)
∫ ∞

−∞
pη(u− h)Φη(u− h)du− 2Φ′

ξ(h)
∫ ∞

−∞
(u− h)pη(u− h)Φη(u− h)du

+O

[
Φ′′
ξ (h)

∫ ∞

−∞
(u− h)2pη(u− h)Φη(u− h)du

]
. (B-6)

Here, the integrals in Eq. (B-6) can be performed as
∫ ∞

−∞
pη(u− h)Φη(u− h)du =

1
2

∫ ∞

−∞

d

du
{Φη(u− h)}2du =

1
2
, (B-7)
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∫ ∞

−∞
(u− h)pη(u− h)Φη(u− h)du =

∫ ∞

−∞
u′pη(u′)Φη(u′)du′

=
∫ ∞

−∞
u′pη(u′)

{
Φη(u′) − 1

2

}
du′ +

1
2

∫ ∞

−∞
u′pη(u′)du′

=
1
2

∫ ∞

−∞
u′

d

du′
[Φη(u′) {Φη(u′) − 1}]du′ =

1
2

∫ ∞

−∞
Φη(u′) {1 − Φη(u′)} du′, (B-8)

and

O

[
Φ′′
ξ (h)

∫ ∞

−∞
(u− h)2pη(u− h)Φη(u− h)du

]

= O

[
Φ′′
ξ (h)

∫ ∞

−∞
(u− h)2pη(u− h)

{
Φη(h) +O[(u− h)]

}]
du = O

(
Φ′′
ξ (h)σ

2
η

)
, (B-9)

where we again used the assumption that the independent noise is zero mean. Thus, plugging Eqs. (B-
7), (B-8) into Eq. (B-6), we can derive the approximation in Eq. (B-2), and Eq. (9) follows from
Eqs. (B-1) and (B-2). Furthermore, when the independent noise is Gaussian, the following integral
formula holds: ∫ ∞

−∞
Φη(u) {1 − Φη(u)} du =

ση√
π
. (B-10)

Plugging this result into Eq. (9), we obtain Eq. (10).

C. Numerical generation of noisy signals
From given uncorrelated time sequences fi(t′) (t′ = 1, 2, 3, . . . , N , i = 1, 2) satisfying E[(fi(k) −
E[fi(k)])(fj(l) − E[fj(l)])] = 0 (i �= j or k �= l), we define the noisy signals si(t) as follows:

si(t) =
N∑
j=1

fi(j)
{
U
(
t− (j − 1)δt

)− U(t− jδt)
}

(C-1)

where U(t) is a Heaviside step function satisfying U(t) = 0 (t < 0), 1 (t ≥ 0), and δt determines the
time unit of the noisy signal. We use δt = 0.1 in the numerical simulations. In this case, the noisy
signal si(t) has the following autocorrelation function Ci(t):

Ci(t) = E
[(
fi(t′) − E[fi(t′)]

)2](1 − |t|
δt

)
(−δt < t < δt), 0 (otherwise). (C-2)

The power spectrum Pi(Ω) is given by

Pi(Ω) =
∫ ∞

−∞
Ci(t)e−iΩtdt = E

[(
fi(t′) − E[fi(t′)]

)2]2 − 2 cos(Ωδt)
Ω2δt

. (C-3)

D. Gaussian case
From the numerical results, it is conjectured that the threshold filter does not enhance the noise
correlation if both common and independent noise terms are Gaussian. It is difficult to prove this
conjecture rigorously from the general expression of the filtered correlation ρ̃, Eq. (8), but, in the
limit of weak independent noise, we can show that this conjecture actually holds true by using the
approximate expression for ρ̃, Eq. (10), which is valid when ση � σξ, i.e., in the physical situation
that we typically assume. Let us denote the PDF of the Gaussian common noise as

pξ(u) =
1√

2πσξ
exp

(
− u2

2σ2
ξ

)
=

1
σξ
p

(
u

σξ

)
, (D-1)

where y = u/σξ and p(y) denotes a normal distribution,

p(y) =
1√
2π

exp
(
−y

2

2

)
. (D-2)
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The CDF of the common noise ξ is given by

Φξ(u) =
∫ u

−∞
pξ(u′)du′ =

∫ u/σξ

−∞
p(y)dy = Φ

(
u

σξ

)
, (D-3)

where

Φ(y) =
∫ y

−∞
p(y)dy. (D-4)

As shown in Fig. 3, the optimal threshold value appears to be h = 0 when both noise terms are
Gaussian. This can be shown as follows for the approximate filtered correlation ρ̃. Since Eq. (10) can
be transformed as

ρ̃ = 1 − σηpξ(h)√
πΦξ(h)(1 − Φξ(h))

+O

[(
ση
σξ

)2
]

= 1 − 1√
π

ση
σξ

p (z)
Φ (z) (1 − Φ (z))

+O

[(
ση
σξ

)2
]
, (D-5)

where z = h/σξ, ρ̃ depends on h only through z = h/σξ. As shown in Fig. D-1(a), the function

f(z) =
p (z)

Φ (z) (1 − Φ (z))
(D-6)

in the right-hand side of Eq. (D-5) takes a minimum value 2
√

2/
√
π at z = 0, where we used p(0) =

1/
√

2π and Φ(0) = 1/2. Therefore, ρ̃ takes its maximum value

ρ̃max = 1 − 1√
π

ση
σξ

p (0)
Φ (0) (1 − Φ (0))

+O

[(
ση
σξ

)2
]

= 1 − 2
√

2
π

ση
σξ

+O

[(
ση
σξ

)2
]

(D-7)

at z = h = 0 irrespective of the value σξ. Comparing this maximum filtered correlation with the raw
correlation in Eq. (6),

ρ =
σ2
ξ

σ2
ξ + σ2

η

=
1

1 +
(
ση

σξ

)2 = 1 −
(
ση
σξ

)2

+O

[(
ση
σξ

)4
]
, (D-8)

it is obvious that ρ̃max < ρ as long as 0 < ση � σξ, because ρ̃max decreases linearly with ση/σξ while
ρ decreases quadratically, as shown in Fig. D-1(b). Thus, the threshold filter cannot enhance the
noise correlation when both common and independent noise terms are Gaussian and the independent
noise is sufficiently weaker than the common noise.

Fig. D-1. (a) Function f(z). (b) Raw correlation ρ and the maximum of the
approximate filtered correlation ρ̃max. Exact filtered correlation ρ̃ with σξ = 1
and h = 0 is also shown for comparison.
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E. Difference in the distribution of the independent noise
In our theoretical analysis, we assumed that the independent noise terms η1(t) and η2(t) obey the
same distribution pη(η) for simplicity. This is also because we typically consider the case that the two
correlated noisy signals are measured in physically similar situations, e.g. by two signal sensors placed
nearby, and thus the independent noisy signals superimposed on the common signal have similar
statistics. Actually, the quality of the noise-induced synchronization is essentially determined by the
common noise and the distributions of the independent noise terms are not so relevant as long as they
are weak and unbiased. To illustrate this, we here show an example of noise-induced synchronization
of two oscillators driven by

s1(t) = ξ(t) + η1(t), s2(t) = ξ(t) + η2(t), (E-1)

where η1(t) and η2(t) obey two different distributions chosen from a Gaussian distribution p1(η), a
triangular distribution p2(η) and a Laplace distribution p3(η),

p1(η) =
1√

2πση
exp

[
− η2

2σ2
η

]
, p2(η) =

1√
2ση

exp

[
−
√

2|η|
ση

]
,

p3(η) =
√

6ση − |η|
6σ2

η

(−
√

6ση ≤ η ≤
√

6ση), 0 (otherwise). (E-2)

We assume that both η1(t) and η2(t) are zero-mean and possess the same standard deviation ση = 0.3,
and the common noise obeys the quodratic bimodal distribution in Fig. 2(d). The natural frequency of
the oscillators is fixed at ω = 1, and the phase sensitivity function of both oscillators is Z(θ) = 0.1 sin θ.

Fig. E-1. Stationary probability density functions of the phase difference be-
tween two oscillators driven by correlated noisy signals, where the independent
noisy signals obey different statistics. Red curves are obtained for raw noisy
signals without filtering, and blue curves show the results for filtered noisy
signals. (a) ρ = 0.87, ρ̃ = 0.93, R1 = 0.45, R̃1 = 0.68, (b) ρ = 0.87, ρ̃ = 0.92,
R1 = 0.42, R̃1 = 0.65, (c) ρ = 0.87, ρ̃ = 0.93, R1 = 0.43, R̃1 = 0.67.
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Figure E-1 shows the PDFs of the stationary phase difference between the two oscillators driven by
s1 and s2, which are obtained by direct numerical simulations. It can be seen that the threshold filter
actually improve noise-induced synchronization between the oscillators even if the independent noise
terms obey different statistics.
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