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Abstract: A novel, distributed timing allocation method [2, 3, 4, 5]
has been proposed for packet collision avoidance in wireless sensor net-
works recently. In this paper, this proposed method is theoretically ex-
amined, and a hidden self-organization mechanism is unveiled. As the
result, some important fundamental questions regarding this method
are reasonably resolved. Namely, our present analysis provides a def-
inite criterion, as to when it functions properly for densely connected
networks in real noisy environments.
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1 Introduction and motivation of the study

Wireless sensor networks (WSNs) [1] are now utilized for a variety of dis-
tributed sensing purposes; indoor, outdoor, mobile commerce and even in-
body monitoring applications. They are usually made up with wireless sensor
nodes; small, cheap, and resource limited devices sensing the environment
and communicating with each other. In such WSNs, one of the challenging
and important design principles is the idea of scalability, which means that
the function of WSNs should not be influenced when the number of sensor
nodes is arbitrarily varied even time-dependently. Therefore, communica-
tion protocols for WSNs generally require distributed, adaptive, and even a
self-organizing mechanism.

As mentioned above, each sensor node (SN) is generally resource limited,
so each SN usually shares a common communication band with other SNs.
This means that if multiple communications take place simultaneously in a
WSN, they interfere with each other, and, in the worst case, data packets
collide with each other and can be lost in the network. Hence, for WSNs, it
is essential to avoid collisions of data packets in advance.

Two major approaches have been developed for collision avoidance in
WSNs: carrier sense multiple access with collision avoidance (CSMA/CA)
and (distributed versions of) time division multiple access (TDMA). How-
ever, neither of these methods is perfect for the following reasons. Namely,
CSMA/CA requires that the density of SNs is relatively low and the traffic
is not so heavy. Also, TDMA requires global timing synchronization of all
SNs, as well as computation and communication overheads in each SN, to
allocate the communication timings in advance.

Motivated by the above mentioned situation, an alternative collision avoid-
ing method has been proposed recently [2, 3], which is expected to meet the
need for more flexible techniques with less communication overheads. The
original idea of this method comes from a certain self-organizing mechanism
of timing allocation process, which will be analyzed in this paper. Improve-
ments of this method have been continued for these several years [4, 5]. How-
ever, we have not been able to explain why this method generates the correct
timing allocations for SNs clearly. This paper reveals the hidden mechanism
behind the presented method [2, 3, 4, 5], and explains why this method func-
tions properly, for the first time. Also, some new findings are provided, which
are useful for further applications of this method.

2 Framework of the distributed timing allocation method

In this paper, we consider a simple, realistic situation of a WSN with N sen-
sor nodes (SNs) being located in a single small room, as shown in Fig. 1 (a).
Here, each SN can communicate with all other SNs, as its range of wireless
communication is supposed to be several tens of meters. Namely, in this par-
ticular example, the network has a densely connected topology. It should be
emphasized that such densely connected (sub)networks are often embedded
in a widely distributed multi-hop network. Therefore, the following analy-
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sis of the densely connected network provides an essential building block for
understanding more general, widely distributed networks.

Here, we assume that each SN periodically transmits a timing beacon
(and a data packet if it has any sensing data at this stage) to other SNs,
which can be a short pulse whose timing information is expressed as the
timing of transmission in itself. Also, we denote the period of transmissions
as T . Since each SN communicates periodically, it is convenient to introduce
a phase variable φ(t) (∈ [0, 2π]) for each SN. Then, for the i th SN in the
network, we can identify its instantaneous timer value as φi(t), and it is
naturally assumed that φi(t) increases as φi(t) = 2π

T t + φi(0). Namely, the
instantaneous state of each SN is mapped to a rotating phase point ‘◦’ on the
circle as shown in Fig. 1 (b) or 1 (c). In addition, we assume that each SN
transmits a timing beacon (and a data packet) when its φi(t) value becomes
0. From this coordination of φ(t), it is now clear that a reasonable allocation
of transmission timings for N SNs can be either a uniformly distributed
pattern of Fig. 1 (b), or an evenly clustered pattern of Fig. 1 (c), because
each SN is able to avoid packet collisions by using such allocated timings,
which is similar to the ones in TDMA. One simple way for obtaining such
timing allocations is given as follows. For each φi that evolves according to
dφi
dt = 2π

T (≡ ω), we introduce mutual interactions between the i th and j th
SNs. Since this interaction between i th and j th SNs is uniquely coordinated
by the phase difference of φi−φj , we assume that the interaction is expressed
by a function Γ(φi −φj) as shown in Fig. 1 (d). Then, one possible modeling
of the timing allocation process can be given as

d

dt
φi(t) = ω +

1
N

N∑
j=1

Γ(φi − φj) +
√

2Dξi(t), (i = 1, ..., N), (1)

where Γ is the 2π-periodic function of φi − φj , and ξi is the external noise
whose intensity is given by the parameter D (D = 0 for the noiseless case).
See [2, 3, 4] for more detailed and extensive descriptions of this modelling.
In Eq. (1), 1/N is a normalization factor, which is necessary in taking the
large N limit properly. We note that the functions Γ in Fig. 1 (d) have a
‘repulsive’ effect on any pair of i th and j th SNs. Namely, each pair of SNs
tends to avoid having similar values of φi(t) and φj(t) at any moment, which
is nothing but the collision avoidance.

This idea and its simulation results were presented at [2], and then soon
later applied for the patent of [3]. Since then, its improvements and further
applications have been presented (see [4], for example), and even experimen-
tal verifications have been recently conducted in real environments [5]. For all
these progresses, the very essential questions have remained to be unsolved,
which are listed as follows. (i) How does the allocation process of Eq. (1)
lead to reasonable patterns such as in Fig. 1 (b) or Fig. 1 (c)? (ii) How can
we choose the function Γ so as to obtain the specific pattern of Fig. 1 (b)
or Fig. 1 (c)? (iii) To what extent is the presented method robust to the
external noises ξi(t)?
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It should be emphasized that these questions are important, as they rep-
resent the unknown self-organizing mechanism of the presented method.

Fig. 1. (a) Sensor networks of N nodes (N = 8, for in-
stance). (b), (c) Resulting timing allocation for
type1 and type2 functions, and (d) Function Γ
with a tuning parameter a (blue line); type1 func-
tion (green line, a = 0), type2 function (red line,
a = d).

3 Systematic simulations and analysis

To answer these questions systematically, we introduce the following family
of the function Γ,

Γ(φ) = −φ + d

d − a
(−d ≤ φ < −a),

φ

a
(|φ| ≤ a), −φ − d

d − a
(a < φ ≤ d), (2)

and Γ(φ) = 0 for d < |φ| < π, as shown in the graph in Fig. 1 (d), and
consider the effect of external noise by tuning a and D. The constant d

(0 ≤ d ≤ π) in Eq. (2) determines the range of phase interaction for each SN,
and the parameter a (0 ≤ a ≤ d) tunes the shape of Γ. Then, this family
of the function Γ includes both the type1 and type2 functions as the a → 0
and a → d limits, respectively, as in Fig. 1 (d). Note that these two specific
functions have already been considered in [4] and in [2, 3], respectively.

First, we present results of systematic simulations for timing allocations
from Eq. (1). Without loss of generality, we can put ω = 0 in Eq. (1) by
moving to a rotating frame and redefining the phase variables as φi+ωt → φi

for all i. In addition to direct simulations of Eq. (1) for finite N , we also
perform numerical simulations of the corresponding nonlinear Fokker-Planck
equation [6],

∂

∂t
P (φ, t) = − ∂

∂φ

{[∫ 2π

0
Γ(φ − θ)P (θ, t)dθ

]
P (φ, t)

}
+ D

∂2

∂φ2
P (φ, t), (3)

which can be derived from Eq. (1) in the N → ∞ limit. This describes the
dynamics of the one-body probability density function (PDF) P (φ, t) of the
phase φ of any oscillator at time t, and this P (φ, t) indicates how the allocated
timings φi(t) are distributed on the circle of [0, 2π] in the N → ∞ limit.
Thus, P (φ, t) is 2π-periodic in φ as P (φ + 2π, t) = P (φ, t) and normalized
as

∫ 2π
0 P (φ, t)dφ = 1. Note that Eq. (3) always has a uniform stationary

solution, P0(φ) = 1/2π, corresponding to the uniform state. However it may
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be unstable and cannot be observed in some situations, reflecting non-trivial
dynamics of Eq. (1). Here, we also note that Eq. (1) has been analyzed
and phase clustering behavior due to certain repulsive interactions have been
demonstrated in [7]. However, [7] focuses on the noiseless situation, whereas
our present analysis is for real environments with noises and for distinct class
of phase coupling functions with extremely simple functional forms.

In the following simulations, we fix the constant d as π/2 for instance,
and vary the parameter a. Figure 2 (a) shows typical snapshots of the phase
variables for the type1 (a = 0) and type2 (a = π/2) functions obtained by
direct numerical simulations of Eq. (1) with N = 500 and D = 0.01 of small
noise, starting from random initial conditions. The resulting phase variables
φi (i = 1, ..., 500) at t = 100 are almost uniformly spread in [0, 2π] for the
type1 function (black crosses), whereas they are split into several groups
(4 clusters in this example) for the type2 function (red circles). Figure 2 (b)
compares normalized phase histograms obtained from Eq. (1) with the sta-
tionary PDFs from Eq. (3) for several values of a, showing good agreement.
The phase is uniformly distributed over [0, 2π] for relatively small values of a

(e.g. a = 0, black crosses in Fig. 2 (b)), whereas they exhibit regularly aligned
peaks for larger values of a (e.g. a = 1.2 and π

2 , blue circles and red triangles,
respectively in Fig. 2(̇b)), reflecting the formation of phase clusters. Thus,
the system undergoes a transition from the uniform state of P0(φ) = 1/2π to
clustered states as the parameter a is increased.

Fig. 2. (a) Typical snapshot of phase variables φi from
Eq. (1) for the type1 and type2 functions. (b) Nor-
malized histograms and PDFs of φ. Data points
and curves are respectively obtained from Eq. (1)
and Eq. (3), showing a good match. (c) Stability
diagram of the uniform state and observed pat-
terns.

To understand this observed transition, we perform a linear stability anal-
ysis of the uniform state by applying a small perturbation q(φ, t) to the
uniform solution P0(φ) = 1/2π and examining whether this perturbation de-
cays or not. Substituting P (φ, t) = P0(φ) + q(φ, t) into Eq. (3), a linearized
equation of q(φ, t) is easily obtained. Expanding q(φ, t) and Γ(φ) into Fourier
series as q(φ, t) =

∑∞
m=−∞ eimφqm(t) and Γ(φ) =

∑∞
m=−∞ eimφΓm with qm(t)

and Γm being Fourier coefficients, this linearized equation of q(φ, t) is decom-
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posed into linear equations of the form q̇m(t) = (−imΓm − Dm2)qm(t) for
m = −∞, · · · , +∞. Thus, for each qm, the real part of the linear growth
rate λm is given by λm = mΓ(I)

m − Dm2 where Γ(I)
m is the imaginary part of

Γm. The uniform solution P0(φ) is linearly stable if λm is negative for all m

(except λ0 that is constantly zero). If λm is positive at some values of m, the
uniform solution is destabilized and the corresponding Fourier modes grow.

By calculating Γm from Eq. (2), the growth rate λm is explicitly obtained,

λm =
d

π(d − a)

(
sin md

md
− sinma

ma

)
− Dm2 (m = −∞, · · · ,∞). (4)

Then, in the type1 limit (a → 0), we obtain λm = − 1
π

(
1 − sin md

md

)
− Dm2.

Clearly, λm is always negative for any m (except λ0 being 0), so the uni-
form state is stable. On the contrary, in the type2 limit (a → d), λm =
1
π

(
cos md − sin md

md

)
− Dm2 is obtained, which becomes positive when m is

near 2π/d and its integer multiples, for small D. Therefore, the uniform state
does become unstable and the clustered states may possibly be organized. In
between these two limits, there exists a critical value of a at ac, where the
uniform state changes its stability. Note that the noise always tends to stabi-
lize the uniform state, and, if D is sufficiently large, no mode of m becomes
unstable even in the type2 limit. Therefore, a critical value Dc of the noise
intensity D also exists.

Figure 2 (c) shows a stability diagram of the uniform state, together with
the observed stationary patterns from direct numerical simulations of Eq. (1).
The red thick curve represents the set of critical parameter pairs (ac, Dc)
where the uniform state changes its stability. Note that this curve is obtained
from the condition that λm = 0 for all m, and in the upper region (colored in
green) of this curve, λm > 0 is always satisfied for some m. Also, the result
of direct simulations of Eq. (1) for N = 100 nodes is plotted on each grid in
Fig. 2 (c). Filled marks with color indicate phase-clustered states (◦ in blue:
4-cluster, Δ in yellow: 5-cluster, and � in violet: 9-cluster) and crosses (×
in black) indicate the uniform state. We see that cluster states are actually
formed in this region of a and D where λm is positive and the uniform state
is unstable (slight discrepancy is due to finite-size effect).

The above facts reveal the self-organizing mechanism behind the pre-
sented method, so reasonable answers are thus provided for the three basic
questions posed in the chapter 2.

4 Conclusions

In this paper, we have revealed the self-organizing mechanism in the timing
allocation method [2, 3, 4, 5] for densely connected WSNs. Theoretical and
partly numerical results obtained here provide useful guidelines leading to
proper functioning of the proposed method. More specifically, to the question
(i) posed in the end of chapter 2, the linear stability and the associated mode
analysis of Eq. (3) provides reasonable understanding of this mechanism.
Also, to the question (ii) and (iii), the theoretically obtained criterion shown
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in Fig. 2 (c) gives a useful information, which is expected to provide further
application of the proposed method.

In addition to such practical significance of the result, the analysis here
sheds a new light on the uncovered side of synchronization phenomena, long
forgotten since [7]. Further analysis and experiments are expected to explore
this new area of researches in distributed systems.
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