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Phase reduction framework for limit-cycling systems based on isochrons has been used as a power-
ful tool for analyzing the rhythmic phenomena. Recently, the notion of isostables, which comple-
ments the isochrons by characterizing amplitudes of the system state, i.e., deviations from the
limit-cycle attractor, has been introduced to describe the transient dynamics around the limit cycle
[Wilson and Moehlis, Phys. Rev. E 94, 052213 (2016)]. In this study, we introduce a framework
for a reduced phase-amplitude description of transient dynamics of stable limit-cycling systems. In
contrast to the preceding study, the isostables are treated in a fully consistent way with the
Koopman operator analysis, which enables us to avoid discontinuities of the isostables and to apply
the framework to system states far from the limit cycle. We also propose a new, convenient
bi-orthogonalization method to obtain the response functions of the amplitudes, which can be
interpreted as an extension of the adjoint covariant Lyapunov vector to transient dynamics in limit-
cycling systems. We illustrate the utility of the proposed reduction framework by estimating the
optimal injection timing of external input that efficiently suppresses deviations of the system state
from the limit cycle in a model of a biochemical oscillator. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4977195]

The phase reduction theory provides a general frame-
work to simplify a complex, multi-dimensional limit-
cycling system describing a stable rhythmic activity to a
one-dimensional phase equation evolving on a circle.1–6 It
has been successfully used to understand the synchroni-
zation phenomena of weakly interacting rhythmic ele-
ments in physical, chemical, biological, and engineered
systems.1–12 Methods to optimize and control synchroni-
zation of rhythmic elements have also been developed by
using the phase reduction framework.13–17 However, to
describe the system dynamics far from the limit cycle,
amplitude degrees of freedom should be taken into
account. In this study, by extending the preceding studies,
we propose a phase-amplitude reduction framework that
is applicable to transient dynamics far from the limit
cycle.

I. INTRODUCTION

The roles of amplitude degrees of freedom in limit-
cycling systems, which represent deviations of the system
states from the limit-cycle attractor and are eliminated in the
phase-reduction framework, have been extensively studied
because they are rich sources of intriguing oscillator dynam-
ics at individual6,7,18–22 and ensemble2,6,7,23–27 levels. In
most studies, however, the analysis is restricted to the vicin-
ity of a supercritical Hopf bifurcation, where a simple

normal form (Stuart-Landau equation) of the oscillator
dynamics is available.28,29 Some other studies use moving
orthonormal frames along the limit cycle to define the ampli-
tudes of the oscillator,6,20,21 which allow the quantitative
study of the amplitude dynamics of oscillators far from bifur-
cation points. However, in general, those amplitude variables
interact nonlinearly with each other, which hinders simplifi-
cation of the system description. Thus, it is highly desirable
to establish a framework for a quantitative reduced descrip-
tion of limit-cycling systems applicable to transient dynam-
ics far from the limit cycle. Such a framework would
facilitate in-depth studies of the roles of amplitude degrees
of freedom of limit-cycling systems in realistic settings.

The key idea in the phase reduction is assigning the
same phase value to the set of initial conditions that share
the same asymptotic behavior. These sets of identical phase
values are called isochrons.1–5,7 Analogously, in a recent
work,30 the notion of isostables is introduced by identifying
the initial conditions that share the same relaxation property,
i.e., the same decay rate toward the attractor. It has also been
shown30 that the isochrons and isostables can be understood
from a unified point of view of the spectral properties of the
Koopman (composition) operator.31 For each characteristic
decay rate of the system state toward the attractor, a set of
isostables representing an amplitude degree of freedom can
be introduced, which is independent from the phase and the
other amplitude degrees of freedom. By retaining a small
number of amplitude variables representing a dominant
(slowly decaying) part of the transient dynamics, reduced
description of the system dynamics can be derived. The
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Koopman operator has attracted a broad interest recently,
because it is closely related to a rapidly developing data-
driven approach to complex nonlinear systems, called the
dynamic mode decomposition.31–37

Amplitude reduction frameworks for a system near a
stable equilibrium based on isostables have been established
for multi-dimensional30,38,39 and infinite-dimensional sys-
tems40 and have been used to formulate optimal control
problems of moving the system state toward the equilib-
rium.30,39,40 Recently, Wilson and Moehlis41 have extended
the isostable reduction framework to limit-cycling systems.
However, the isostables introduced in their work have dis-
continuities on one leaf of the isochrons. To avoid this prob-
lem, it is assumed in Ref. 41 that the system evolves in a
close-enough neighborhood of the limit cycle so that the dis-
continuities are negligible, and the amplitude response to
perturbation in their reduced system involves the first order
response evaluated only on the limit cycle. Therefore, their
analysis is essentially equivalent to deriving a decoupled lin-
ear system preserving the spectral properties of the original
system in a vicinity of the limit-cycle attractor (called kine-
matically similar system in terms of Lyapunov transforma-
tions42–44) by making use of covariant properties of adjoint
covariant Lyapunov vectors45 (also called adjoint Floquet
vectors46 or dual Lyapunov vectors47). A method to analyze
response functions of decoupled phase and amplitude varia-
bles in limit-cycling systems, which is based on the Lie sym-
metries formalism and is valid far from the attractors, has
also been proposed.48,49 However, the latter analysis is lim-
ited to two-dimensional dynamical systems and naive appli-
cation of the method proposed in Ref. 49, that is, solving
adjoint equations to calculate the response functions, can
yield flawed results numerically, as we discuss in this paper.

In this study, we introduce a phase-amplitude reduction
framework to describe the transient dynamics of stable limit-
cycle oscillators, which is applicable to high-dimensional
dynamics far from the limit-cycle attractor. We propose a
systematic bi-orthogonalization method to numerically esti-
mate the fundamental quantities for the reduction accurately,
i.e., the first order response functions of the phase and ampli-
tudes to perturbations along a given trajectory, which is not
necessarily the limit cycle itself. These response functions
can be interpreted as an extension of the adjoint covariant
Lyapunov vectors to transient dynamics. We illustrate the
utility of the proposed framework by estimating the optimal
injection timing of external input that realizes the maximal
suppression of the most persistent (least decaying) amplitude
degree of freedom.

This paper is organized as follows: in Sec. II, phase and
amplitudes in limit-cycling systems are introduced using the
Koopman operator theory. In Sec. III, the phase-amplitude
reduction framework for limit-cycling systems is introduced,
and the bi-orthogonalization method to obtain their response
properties is developed. In Sec. IV, the theory is illustrated
by analyzing the phase-amplitude response properties of a
minimal chemical kinetic model of an oscillatory genetic cir-
cuit. Also, the optimal injection timing problem is introduced
and analyzed. Section V summarizes the results.

II. PHASE, AMPLITUDES, AND THE KOOPMAN
OPERATOR

We consider a N-dimensional autonomous dynamical
system

_X ¼ F Xð Þ; X 2 RN ; (1)

where X tð Þ is a system state, and F Xð Þ is a vector field.
Suppose the system (1) has a periodic orbit v : X0 tð Þ with
period T. Let / : R$RN ! RN denote the flow induced
by Eq. (1), i.e., / t;Xð Þ is the solution of Eq. (1) at time t
with the initial condition X at t¼ 0.

The stability of the periodic orbit v is characterized by
the characteristic multipliers28 Ki i ¼ 1;…;Nð Þ, which are
the eigenvalues of the time-T flow linearized around a point
X0 t%ð Þ on the orbit v (also called the monodromy matrix):
M X0 t%ð Þð Þ ¼ @/ T;Xð Þ=@XjX¼X0 t%ð Þ. When the relation 1
¼ K1 > jK2j & ' ' ' & jKNj holds, the periodic orbit v is a
stable limit cycle. For simplicity, we hereafter assume that
the Floquet multipliers Ki are positive, real, and simple.
Extension to the case with complex conjugate multipliers
can be performed in a parallel way to the analysis of stable
equilibria.30,40 We consider the dynamics of the system in
the basin of attraction B ( RN of the stable limit cycle v.

The Koopman operator Ut is a linear operator that
describes the evolution of a function defined on the phase
space, called an observable f : RN ! C. It is defined as
Utf Xð Þ ¼ f ) / t;Xð Þ, where ) represents the composition of
functions. The operator Ut has eigenfunctions50,51 si Xð Þ
i ¼ 1;…;Nð Þ associated with eigenvalues ki i ¼ 1;…;Nð Þ,

that is,

Utsi Xð Þ ¼ ekitsi Xð Þ; (2)

where k1 ¼
ffiffiffiffiffiffiffi
*1
p

x; x + 2p=T, and ki ¼ log Kið Þ=T i ¼ 2;ð
…;NÞ. The eigenvalues correspond to the characteristic
exponents of the limit cycle v,28 hence they reflect the spec-
tral property of the limit-cycling system.

We hereafter assume that the vector field F is twice con-
tinuously differentiable so that the continuously differentia-
ble eigenfunctions si exist on the whole basin of attraction,51

and we further assume the gradients of si are Lipschitz con-
tinuous on B, which is required for the perturbative analysis.
Note that a non-resonant analyticity of F, which holds gener-
ically in practical situations, is sufficient for the Lipschitz
continuity, because this assures that si is analytic.

Let us introduce amplitudes of the system state X by
ri Xð Þ + Re si Xð Þð Þ i ¼ 2;…;Nð Þ, where Re(z) is the real part
of a complex number z. Because

UDtri Xð Þ ¼ Re si / Dt;Xð Þð Þð Þ ¼ ekiDtri Xð Þ; (3)

each ri obeys

ri
:

Xð Þ ¼ lim
Dt!0

UDtri Xð Þ * ri Xð Þ
Dt

¼ kiri: (4)

We can also introduce a phase of X by h Xð Þ + arg s1 Xð Þð Þ,
where arg(z) is the argument of z, whose range is defined as
the interval [0, 2p). Because k1 ¼

ffiffiffiffiffiffiffi
*1
p

x, h obeys
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_h Xð Þ ¼ x: (5)

This definition of the phase coincides with that of the asymp-
totic phase used in the conventional phase reduction the-
ory.1–6 Therefore, level sets of h provide isochrons.
Analogously, isostables are defined as level sets of jrij. Note
that the linear form (4,5), which is valid in the entire basin of
attraction,51 is not necessarily derived by the perturbative
power-series approach based on the Poincar!e-Dulac normal
form theory and its extensions.28,52–55 Hence we do not
assume the non-resonance condition usually required for a
complete linearization in the Poincar!e-Dulac type scheme.
See Sec. 3.2 of Lan and Mezić’s work51 for an example with
resonance that can be linearized by using Koopman eigen-
functions including non-analytic (trans)monomials.

Because the sign of ri is neglected, each isostable is
composed of two connected components corresponding to
þri and *ri. These connected components of isostables,
associated with one of the exponents ki, foliate the basin of
attraction of the limit cycle, and each leaf of this foliation
provides a level set of the amplitude associated with the
exponent. From Eq. (4), we can see that initial conditions on
the same isostable share the same decay rate toward the limit
cycle. These phase and amplitudes defined above evolve
independently under linear time invariant dynamics and thus
provide a simple description of the dynamics around the
limit cycle.

Here, we note that the amplitudes can also be defined
as ~ri Xð Þ + jsi Xð Þj, as in the preceding study.30 However,
this definition makes a coordinate transformation
X 7! h; ~r2;…; ~rNð Þ† († denotes transpose) non-invertible,
i.e., its inversion can be multi-valued in some regions. The
phase-amplitude expression may suffer from this ambigu-
ity, particularly when we apply perturbations to the system.
Therefore, we adopt the definition ri Xð Þ + Re si Xð Þð Þ in this
study.

III. REDUCTION FRAMEWORK AND A METHOD TO
CALCULATE THE RESPONSE FUNCTIONS OF THE
PHASE AND AMPLITUDES

Suppose that perturbation !p tð Þ, where !> 0 character-
izes its magnitude, is introduced to the oscillator (1) as

_X ¼ F Xð Þ þ !p tð Þ: (6)

We denote a coordinate transformation X 7!H by X ¼ h Hð Þ,
where H ¼ h; r2;…; rNð Þ†. In this phase-amplitudes coordi-
nate, the perturbed system (6) takes the following form:

_h ¼ xþ !rh h Hð Þð Þ ' p tð Þ; (7)

ri
: ¼ kiri þ !rri h Hð Þð Þ ' p tð Þ; i ¼ 2;…;Nð Þ; (8)

where r represents the gradient and ' is a dot product.
Consider a solution v% : X% tð Þ of the unperturbed system

(1) with an initial condition X% 0ð Þ taken arbitrarily in the
basin of attraction B, and let v%p : X%p tð Þ be a solution of the
perturbed system (6) with the same initial condition X%p 0ð Þ
¼ X% 0ð Þ as the unperturbed system. As is known in a regular

perturbation theory,55–59 we can show by the Gr€onwall-
Bellman inequality that the magnitude of the error
jjX%p tð Þ * X% tð Þjj, where jj ' jj denotes the Euclidean norm, is
bounded by b! eat * 1ð Þ=a, where a and b are positive con-
stants. This means that X%p tð Þ is in a neighborhood of radius !
of X% tð Þ within a finite time interval of length O(1). We here
emphasize that this does not imply the breakdown of the con-
tinuous dependence of the solutions on ! within a specific,
fixed finite time interval (as long as the unperturbed solution
exists on an entire half line, which is the case here). In fact,
once we fix an arbitrary large finite length interval [0, Tf], we
can consider X%p tð Þ is in a neighborhood of radius ! of X% tð Þ
on this interval by taking appropriately small !, because Tf is
independent of !, and this is sufficient for our argument. The
fact that the length of this interval is O(1) means that the
convergence of X%p tð Þ to X% tð Þ is non-uniform on an !-depen-

dent interval [0, !b) for any b< 0, i.e., the limiting passages
t ! !b and ! !þ0 cannot be interchanged. This does not
affect our analysis in this study, because no asymptotic
properties of the perturbed dynamics are discussed. In
this interval, we can expand the gradients using the

Lipschitz continuity as rh h Hð Þð Þ ¼ rh X% tð Þð Þ þ O !ð Þ and

rri h Hð Þð Þ ¼ rri X% tð Þð Þ þ O !ð Þ in Eqs. (7) and (8). Thus,
we can approximate Eqs. (7) and (8) as

_h ¼ xþ !rh X% tð Þð Þ ' p tð Þ; (9)

ri
: ¼ kiri þ !rri X% tð Þð Þ ' p tð Þ; i ¼ 2;…;Nð Þ; (10)

by neglecting the terms of order !2.
These equations are completely decoupled from each

other, and we can adopt combinations of these N equations
(9) and (10) as a reduced form of the system dynamics in the
close-enough neighborhood of the transient trajectory v*. In
most cases, the first K equations of (9) and (10) for some K
(-N) are of interest, because they describe relatively persis-
tent, slowly decaying modes. Hereafter, we discuss a method
to obtain the reduced K equations. The phase and amplitude
response functions to perturbation, rh X% tð Þð Þ and
rri X% tð Þð Þ, are the fundamental quantities for the proposed
reduction framework.

First, we evaluate the gradients on the periodic orbit v.
Consider an initial condition slightly deviated from the periodic
orbit, hp + h H1ð Þ þ dx, where we defined H1¼ h;0;…;0ð Þ†.
Then

UTri hpð Þ ¼ ekiTri h H1ð Þ þ dxð Þ: (11)

Using the time-T flow, we can also express UTri hpð Þ as

UTri hpð Þ ¼ ri h H1ð Þ þM h H1ð Þð Þdxþ O jjdxjj2
" #" #

: (12)

Equating the RHSs of Eqs. (11) and (12), Taylor expanding
ri around h H1ð Þ, considering that ri h H1ð Þð Þ ¼ 0 and that the
direction of dx is arbitrary and taking the limit jjdxjj ! 0,
we can show that

rr†
i h H1ð Þð ÞM h H1ð Þð Þ ¼ ekiTrr†

i h H1ð Þð Þ: (13)
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Similarly, we obtain

rh† h H1ð Þð ÞM h H1ð Þð Þ ¼ rh† h H1ð Þð Þ: (14)

Thus, the gradient vectors of the phase and amplitudes evalu-
ated on v are the left eigenvectors of the monodromy matrix,
which are called the adjoint covariant Lyapunov vec-
tors.45–47 These vectors can be numerically obtained by the
QR-decomposition based methods45,47 or by the spectral
dichotomy approaches.60,61

Next, we seek the equations for the gradients of the
phase and amplitudes on the transient trajectory v% : X% tð Þ.
Here, we introduce logarithmic amplitudes wi Xð Þ +
log jri Xð Þj
" #

i ¼ 2;…;Nð Þ in order to make the following
treatment of the gradients of the amplitudes simple and par-
allel with the standard arguments in the conventional phase
reduction theory. For convenience of notation, let
w1 Xð Þ ¼ h Xð Þ. In the following, we evaluate the gradient
vectors of wi, whose directions coincide with those of h and
ri. The gradients rh and rri can be calculated from rwi by
rescaling, where the following normalization conditions
should be satisfied:

rri X% tð Þð Þ ' F X% tð Þð Þ ¼ kiri; (15)

rh X% tð Þð Þ ' F X% tð Þð Þ ¼ x: (16)

These normalization conditions are equivalent to Eqs. (4)
and (5).

We can derive adjoint equations for the gradients by
using the same argument as the conventional derivation of
the adjoint equation for the phase response curves, given by
Brown et al.62 It is well known that an infinitesimal error
dx 0ð Þ introduced at t¼ 0 between two unperturbed solutions
X% tð Þ þ dx tð Þ and X% tð Þ satisfies the variational equa-
tion28,52,55,56,58,59 d dx tð Þð Þ=dt ¼ DF X% tð Þð Þdx tð Þ. Because
each logarithmic amplitude wi increases constantly as
_wi X tð Þð Þ ¼ rwi X tð Þð Þ ' _X tð Þ ¼ ki in the absence of perturba-
tion, the error in the logarithmic amplitude coordinate
wi X% tð Þ þ dx tð Þð Þ * wi X% tð Þð Þ ¼ rwi X% tð Þð Þ ' dx tð Þ should
be independent of time, i.e., d rwi X% tð Þð Þ ' dx tð Þ

" #
=dt ¼ 0.

This yields

drwi X% tð Þð Þ
dt

' dx tð Þ ¼ *rwi X% tð Þð Þ ' d dx tð Þð Þ
dt

¼ *rwi X% tð Þð Þ ' DF X% tð Þð Þdx tð Þ
¼ *DF† X% tð Þð Þrwi X% tð Þð Þ ' dx tð Þ:

(17)

Here, we used the variational equation and the definition of
the adjoint matrix. We can take N linearly independent initial
errors dxi 0ð Þ ¼ !0ei, where 0 < !0 - 1 and ei is the ith unit
vector and define the fundamental solution matrix L(t) of the
variational equation as L tð Þ ¼ dx1 tð Þ; dx2 tð Þ;…; dxN tð Þð Þ.
The sign of the determinant of the fundamental solution
matrix, called the Wronskian, is time-invariant due to
Liouville’s trace formula.43,44,54,56,58,59 Because det L 0ð Þð Þ
¼ !0ð ÞN > 0, we obtain det(L(t))> 0 for all t, and thus the
fundamental solution matrix is always invertible. Consider a
matrix form of Eq. (17), d rwi X% tð Þð Þ=dt

" #
L tð Þ

"

¼ *DF† X% tð Þð Þrwi X% tð Þð ÞL tð Þ. We can eliminate L(t) by
multiplying its inverse from the right side on both sides of this
equation. Therefore

drwi X% tð Þð Þ
dt

¼ *DF† X% tð Þð Þrwi X% tð Þð Þ; (18)

should hold. Note that this equation should be solved with an
appropriate end condition. Here, we can approximately
take the end condition of Eq. (18) as rwi X% sð Þð Þ k
rri h H1ð Þð Þjh¼h% for some t¼ s and h¼ h*, because the gradi-
ent field rri Xð Þ is continuous and the transient trajectory
eventually converges to the limit cycle. The adjoint tangent
propagator G t1; t2ð Þ + N t2ð ÞN*1 t1ð Þ, where N(t) is a funda-
mental solution matrix of the linear system given by Eq. (18),
maps rwi X% t1ð Þ

" #
to rwi X% t2ð Þ

" #
. Thus, rh X% t2ð Þ

" #
k

G t1; t2ð Þrh X% t1ð Þ
" #

and rri X% t2ð Þ
" #

k G t1; t2ð Þrri X% t1ð Þ
" #

hold. Therefore, the gradient vectors of the phase and ampli-
tudes are covariant with respect to the action of the propagator
G, and they can be interpreted as an extension of the adjoint
covariant Lyapunov vectors to transient regimes (note that the
adjoint covariant Lyapunov vectors evaluated on the limit
cycle, given by Eqs. (13) and (14), are covariant with respect
to the action of the adjoint of the monodromy matrix, which is
the one period (time-T) propagator).

In the numerical estimation of rh (or rw1), a standard
method is to integrate the adjoint equation backward in time,
while renormalizing rh occasionally so that the normaliza-
tion condition (16) is satisfied.4 This is because rh corre-
sponds to the neutrally stable component (Re(k1)¼ 0) while
other components have negative growth rates (k2,…,N< 0).
However, in the present case, naive backward integration
does not provide correct results for the amplitudes, w2,…,N,
because vector components caused by numerical errors in
the relatively (backward-in-time) unstable covariant subspa-
ces accumulate. Therefore, we have to develop a method to
subtract them off. Note that the standard QR-decomposition
based methods45,47 to obtain the covariant subspace require
the ergodicity of the underlying dynamical process, hence
they cannot be directly applied to the process far from attrac-
tors, and that the spectral dichotomy techniques60,61 to evalu-
ate them may not work well near the left boundary of the
time evolution (see Secs. 2.6 and 2.7 of H€uls’s work61).

To develop a numerical method, we introduce dual vec-
tors ci of rwi that are bi-orthogonal to rwj as

ci X% tð Þð Þ 'rwj X% tð Þð Þ ¼ dij; (19)

where dij is the Kronecker delta. By using ci X% tð Þð Þ, we can
subtract the vector component in the covariant subspace
rwi X% tð Þð Þ from the solution z tð Þ of Eq. (18), which is given
by projecting z tð Þ onto this subspace as

ci X% tð Þð Þ ' z tð Þ
" #

rwi X% tð Þð Þ: (20)

Differentiating Eq. (19) by t, we obtain _ci X% tð Þð Þ
"

*DF X% tð Þð Þci X% tð Þð ÞÞ 'rwj X% tð Þð Þ ¼ 0. The sign of the
Wronskian of Eq. (18) is time-invariant due to Liouville’s
trace formula. By using this fact and a linear independence
of the left eigenvectors of the monodromy matrix, we can
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show a linear independence of frwi Xð ÞgN
i¼1 for every point

X in the whole basin of attraction B. Thus, we obtain

_ci X% tð Þð Þ ¼ DF X% tð Þð Þci X% tð Þð Þ: (21)

The vectors ci are covariant with respect to the action of the
propagator F ð¼ðG†Þ*1Þ of the linear system (21), hence
they can be seen as the covariant Lyapunov vectors extended
to transient regimes. The relative stability relation of covari-
ant subspace of Eq. (21) forward-in-time coincides with that
of Eq. (18) backward-in-time. In order to subtract the unsta-
ble components using the projection (20), the system (21)
should be solved forward-in-time with an approximate initial
condition ci X% 0ð Þð Þ. The vectors frwi X* 0ð Þ

" #
gN

i¼1 can be
approximated by direct numerical simulation of the dynam-
ics, using the Fourier averages and the generalized Laplace
averages50,63 (see the Appendix for details). Then, ci X% 0ð Þð Þ
can be obtained by using the bi-orthogonality relation (19).

Now, we introduce a bi-orthogonalization method to
obtain the response functions of the phase and amplitudes up
to the Kth unstable mode. The procedure is as follows: (a)
evaluate the adjoint Lyapunov vectors on the limit cycle v
and the characteristic exponents, (b) calculate fci X% 0ð Þð ÞgK

i¼1

from frwi X* 0ð Þ
" #

gN
i¼1 obtained by a direct numerical simu-

lation using the bi-orthogonality relation (19), (c) obtain
rw1 X% tð Þð Þ by a backward integration of Eq. (18), (d) obtain
c1 X% tð Þð Þ by a forward integration of Eq. (21), (e) obtain
rw2 X% tð Þð Þ by a backward integration of Eq. (18) while sub-
tracting relatively an unstable mode rw1 X% tð Þð Þ by the pro-
jection (20), and (f) obtain c2 X% tð Þð Þ by the forward
integration of Eq. (21) while subtracting relatively an unsta-
ble mode c1 X% tð Þð Þ by the projection

rwi X% tð Þð Þ ' y tð Þ
" #

ci X% tð Þð Þ; (22)

where y tð Þ is a solution of Eq. (21), (g) perform (e) and (f)

consecutively to obtain frwi X* tð Þ
" #

gK
i¼3 and fci X% tð Þð ÞgK

i¼3

(note that all relatively unstable modes should be subtracted
during integration), (h) obtain rh and rri i ¼ 2;…;Kð Þ
using the normalization conditions (15) and (16), where
ri X% tð Þð Þ on the transient orbit v* is evaluated using Eq. (4)

with the initial condition ri X% 0ð Þð Þ, which is calculated in (b)
by the direct numerical simulation.

This method has significant computational advantages in
evaluating the response functions. To calculate the response
functions frwig

K
i¼1 at m points on the transient orbit v*, it is

necessary to repeat the long-time evolution mK(N þ 1) times
if we evaluate them directly by the direct numerical simula-
tion. In contrast, we need only K(N þ 1) þ 2K times long-
time evolution in the proposed bi-orthogonalization method.

IV. EXAMPLES

As an example, we analyze the Goodwin model, a mini-
mal chemical kinetic model of an oscillatory genetic cir-
cuit.64,65 The Goodwin model has a three-dimensional state
X ¼ x; y; zð Þ† 2 R3. The state variables x, y, and z can be
interpreted as concentrations of a given clock mRNA, the
corresponding protein, and a transcriptional inhibitor, respec-
tively. We use a simple dimensionless form of the Goodwin
model66

_x ¼ a
1þ zn

* x;

_y ¼ x* y;

_z ¼ y* z:

The parameters are set as a¼ 1.8 and n¼ 20. Figure 1(a)
shows the stable periodic solution of the model. The period
and Lyapunov exponents are estimated as T¼ 3.63, k2

¼*0.0766, and k3¼*2.92. We consider a transient solution
X% tð Þ with an initial condition X% 0ð Þ ¼ 1:30; 0:900; 0:800ð Þ†.
Figure 1(a) shows the transient solution. We set the end time
s¼ 63.0 for the backward integration in the following
calculation.

In Fig. 1(b), the phase response function rh X% tð Þð Þ
obtained by the backward integration of the adjoint equation
(18) is compared with the result of the direct numerical sim-
ulations. The results agree well, hence, along this transient
solution X% tð Þ; rh X% tð Þð Þ can always be considered as the
most unstable covariant subspace.

Figure 1(c) shows the amplitude response functions
rr2 X% tð Þð Þ, which is obtained by the proposed

FIG. 1. The Goodwin model. (a) The stable periodic solution of the model (lines) and the transient solution X% tð Þ (plus signs). (b) Three components of the
phase response function rh X% tð Þð Þ obtained by the direct numerical simulation (plus signs) and by the backward integration of the adjoint equation (lines). (c)
Three components of the second amplitude response function rr2 X% tð Þð Þ obtained by the direct numerical simulation (plus signs), the naive backward integra-
tion method (blue dashed lines) and by the proposed bi-orthogonalization method (yellow lines). They are all normalized using the condition (15), and the
results obtained by the direct numerical simulation are appropriately bi-orthogonalized to satisfy the duality relation (19).
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bi-orthogonalization method, by naive backward integra-
tion method, and by direct numerical simulations. All
results are normalized using the condition (15). Note here
that, in the close-enough neighborhood of the limit cycle
orbit v, the vectors rr2 X% tð Þð Þ and F X% tð Þð Þ are nearly nor-
mal. Hence, the normalization procedure using (15) is very
sensitive to a tiny change in their directions. Therefore, not
only the normalization condition (15) but the duality rela-
tion (19) must be carefully imposed on the results of the
direct numerical simulation in order to make a reasonable
comparison with those of the other methods. The results
obtained by the naive backward integration considerably
deviates from those obtained by direct numerical simula-
tions, while those obtained by the proposed bi-
orthogonalization method are in good agreement.

Next, we illustrate the utility of the reduced amplitude
equation (10) by estimating the optimal injection timing of
the weak external input to suppress the most persistent com-
ponent r2 of the amplitudes. We apply a transient control
input !p tð Þ of a fixed waveform w and a fixed duration s*,
i.e., p tð Þ ¼ w t* sð Þ where w 'ð Þ is nonzero only on [0, s*]
and the time s determines the injection timing of the input.
In the spirit of Mauroy’s preceding study,38 we introduce a
finite-horizon optimal control problem of minimizing the
amplitude jr2j at a given time Te. This control problem can
be formulated as follows: find the injection timing s* such
that:

s% ¼ argmins2Ir
jr2 X%p Teð Þ
" #

j; (23)

where Ir + 0; Te * s%½ / and X%p tð Þ is the solution of Eq. (6).
When the magnitude of the input ! is sufficiently small, the
evolution of the amplitude r2 is approximated by the reduced
equation (10). Then, using an analytical solution of the linear
one-dimensional non-homogeneous differential equation
(10) of r2, the optimal control problem (23) can be approxi-
mated to the problem of finding s* such that

sgn r2 X% 0ð Þð Þð Þ
ðTe

0

p tð Þ 'rr2 X% tð Þð Þek2 Te*tð Þdt; (24)

is minimized.
Figure 2 shows the effect of the control input on the

amplitude r2 X%p Teð Þ
" #

at time Te¼ 5. The control input is

assumed as w tð Þ ¼ 0; 0;*1ð Þ† and s*¼ 0.25. The results
obtained by the analytical solution of the reduced amplitude
equation (10) is compared with the result of direct numerical
simulations, showing good agreement for sufficiently weak
input (!¼ 0.01, 0.1). This verifies the validity of the approxi-
mate amplitude equation in the present situation. Thus, the
optimal injection timing of sufficiently weak input can be
theoretically predicted using the formula (24), because it is
essentially equivalent to solving the approximate amplitude
equation (10) directly. In this case, the initial value of the
amplitude is negative, i.e., r2 X% 0ð Þð Þ < 0. Hence, the opti-
mal injection timing s* of the sufficiently weak input can be
estimated by finding the maximum of the waveform in Fig.
2, which gives s*¼ 2.08 in this particular case. Finally, we
note that when the magnitude becomes large (!¼ 1.0), the
approximation (10) fails, and then the results considerably
deviate from each other.

V. CONCLUSION

We formulated a phase-amplitude reduction framework
for stable limit-cycling systems, which can be applied to
transient dynamical regimes far from attractors in
high-dimensional systems. We also developed a bi-
orthogonalization method for numerical estimation of the
response function of the phase and amplitudes, which pro-
vide accurate phase-amplitude response functions. As an
application, we illustrated that the response functions accu-
rately predict the optimal injection timing of external input
which efficiently suppresses deviations from attractors. The
proposed theory would be useful in analyzing and control-
ling the response properties of high-dimensional rhythmic
systems.
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APPENDIX: THE FOURIER AVERAGES AND THE
GENERALIZED LAPLACE AVERAGES

In this section, we introduce methods to obtain the phase
and amplitudes by a direct numerical simulation of the
dynamics.

The phase variable h Xð Þ is evaluated as h Xð Þ
¼ arg f %k1

Xð Þ
% &

, where the Fourier average63 f %k1
Xð Þ of an

observable f is given by

f %k1
Xð Þ ¼ lim

s!1

1

s

ðs

0

f ! / t;Xð Þe*k1tdt: (A1)

FIG. 2. Optimal control problem for the Goodwin model. Effect of the con-
trol input on the amplitude at a given time r2 X%p Teð Þ

" #
, obtained by an ana-

lytical solution of the reduced amplitude equation (line) and by the direct
numerical simulations for 20 different injection timings for three different
magnitudes of the input: !¼ 0.01 (black plus signs), !¼ 0.1 (blue circles),
and !¼ 1.0 (green triangles). The results are normalized so that the l2 norms
of the waveforms evaluated using the 20 discrete time points are the same.
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The amplitude variable ri Xð Þ is obtained by ri Xð Þ
¼ Re f %ki

Xð Þ
% &

, where the generalized Laplace average50

f %ki
Xð Þ of f is given by

f %ki
Xð Þ ¼ lim

s!1

1

s

ðs

0

f ) / t;Xð Þ * #f *
Xi*1

k¼1

f %kk
Xð Þekkt

" #

e*ki tdt;

(A2)

where #f is an averaged observable along the periodic orbit v:
#f ¼ 1=Tð Þ

Ð T
0 f ) / t;X0 t%ð Þð Þdt.

We can simplify the generalized Laplace averages using
convenient observables gi i ¼ 2;…;Nð Þ defined as

gi Xð Þ ¼ rri X0 h%ð Þð Þ ' X * X0 h%ð Þð Þ; (A3)

where h% ¼ h Xð Þ. Here, the adjoint covariant Lyapunov vec-
tors rri X0 h%ð Þð Þ are normalized so that they are dual to the
unitized covariant Lyapunov vectors ci X0 h%ð Þð Þ. Each of
these observables evolves with its corresponding characteris-
tic exponent asymptotically, because, in the close-enough
neighborhood of the periodic orbit v, gi coincides with the
ith amplitude variable ri. Hence, we can show that #gi ¼ 0
and gið Þ%kk

Xð Þ ¼ 0 k ¼ 1;…; i* 1ð Þ for any X in the basin of
attraction B. Thus, we can replace the generalized Laplace
average with the Laplace average

gið Þ%ki
Xð Þ ¼ lim

s!1

1

s

ðs

0

gi ) / t;Xð Þe*kitdt: (A4)
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