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We formulate a theory for the collective phase description of oscillatory convection in

Hele-Shaw cells. It enables us to describe the dynamics of the oscillatory convection by a

single degree of freedom which we call the collective phase. The theory can be considered as

a phase reduction method for limit-cycle solutions in infinite-dimensional dynamical systems,

namely, stable time-periodic solutions to partial differential equations, representing the

oscillatory convection. We derive the phase sensitivity function, which quantifies the phase

response of the oscillatory convection to weak perturbations applied at each spatial point, and

analyze the phase synchronization between two weakly coupled Hele-Shaw cells exhibiting

oscillatory convection on the basis of the derived phase equations. VC 2013 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4837775]

Self-sustained oscillations and synchronization phenom-

ena are ubiquitous in nonlinear dynamical systems, e.g.,

in biological, chemical, electrical, mechanical, neural,

and optical systems. In many cases, each oscillatory unit

is described by an ordinary differential equation with a

stable limit-cycle orbit, and the phase description

method1,2 has been successfully applied to analyze weakly

coupled limit-cycle oscillators. Synchronization of oscilla-

tory spatiotemporal dynamics has also been observed in

fluid systems and is potentially important in various geo-

physical problems. The oscillatory spatiotemporal dy-

namics is generally described by limit cycles of partial

differential equations with an infinite-dimensional state

space, but the phase description method has not been

fully developed for such systems. In this paper, as the first

step toward theoretical understanding of the synchroni-

zation phenomena in fluid systems, we formulate a phase

description method for oscillatory convection in a Hele-

Shaw cell. Using the method, we analyze the phase syn-

chronization of the oscillatory convection between a pair

of Hele-Shaw cells.

I. INTRODUCTION

Synchronization of oscillatory dynamics is ubiquitously

observed in real-world systems.1–3 In the theoretical analy-

sis, each oscillatory unit is typically described by a finite-

dimensional ordinary differential equation possessing a sta-

ble limit-cycle orbit, i.e., a limit-cycle oscillator. Systems of

coupled limit-cycle oscillators have been extensively investi-

gated and shown to exhibit various kinds of intriguing

collective dynamics. In the analysis of weakly coupled limit-

cycle oscillators, the phase description method1,2 for the

limit-cycle oscillator has been successfully used. It enables

us to describe the dynamics of a limit-cycle oscillator by a

single phase variable, which facilitates detailed theoretical

analysis of the synchronization dynamics of weakly coupled

limit-cycle oscillators.

Spatially extended nonlinear dynamical systems can ex-

hibit oscillatory spatiotemporal patterns, such as the oscilla-

tory thermal convection in fluid systems and the spiral waves

in reaction-diffusion systems,4,5 and synchronization phe-

nomena between oscillatory spatiotemporal patterns have

also attracted considerable attention recently.6–11,49 In this

case, the oscillatory spatiotemporal pattern corresponds to a

stable limit-cycle solution of a partial differential equation,

whose state space is infinite-dimensional. Therefore, the con-

ventional phase reduction method for ordinary limit-cycle

oscillators can not be applied to the spatially extended

systems.

In fluid systems, several experimental and numerical

studies on the synchronization of oscillatory spatiotemporal

patterns have been conducted, which are mainly motivated

by the synchronization phenomena observed in geophysical

fluid dynamics. For example, experimental investigations on

the synchronization of convection flows have been per-

formed in both periodic and chaotic regimes in a pair of ther-

mally coupled rotating baroclinic annulus systems.12,13

Numerical studies on the synchronization of spatiotemporal

chaos have also been conducted in a pair of quasi-two-

dimensional channel models14 and in a pair of Hele-Shaw

cells.15

In this paper, as the first step toward theoretical under-

standing of the synchronization phenomena in fluid systems,

we analyze oscillatory thermal convection in the Hele-Shaw

cell.15 The Hele-Shaw cell is a rectangular cavity in which

the gap between two vertical walls is much smaller than the

other two spatial dimensions. We chose this system, because

the oscillatory convection in the Hele-Shaw cell has beena)Electronic address: ykawamura@jamstec.go.jp
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widely studied and it provides a simple model for the con-

vection flow in porous media, which is motivated by geo-

physical applications (see Refs. 15, 16, and also references

therein). We focus on the stable time-periodic oscillatory

convection, i.e., the limit-cycle solution of the system, and

formulate a theory for the phase description of the limit

cycle. The theory enables us to describe the dynamics of the

oscillatory convection by a single degree of freedom which

we call the collective phase.50 On the basis of our theory, we

analyze the phase synchronization of between two weakly

coupled Hele-Shaw cells exhibiting oscillatory convection.

This paper is organized as follows. In Sec. II, we formu-

late a theory for the collective phase description of oscilla-

tory Hele-Shaw convection. In Sec. III, we illustrate our

theory using numerical simulations of the oscillatory convec-

tion. Concluding remarks are given in Sec. IV.

II. PHASE DESCRIPTION OF OSCILLATORY
HELE-SHAW CONVECTION

In this section, we formulate a theory for the collective

phase description of oscillatory Hele-Shaw convection. The

theory can be considered as an extension of our phase reduc-

tion method for the nonlinear Fokker-Planck equation20 to

an equation for oscillatory convection.

A. Dimensionless form of governing equations

The dynamics of the temperature field Tðx; y; tÞ in the

Hele-Shaw cell is described by the following dimensionless

form (see Ref. 15 and also references therein):

@

@t
Tðx; y; tÞ ¼ r2T þ Jðw; TÞ; (1)

where the Laplacian and Jacobian are, respectively, given by

r2T ¼ @2

@x2
þ @2

@y2

 !
T; (2)

Jðw; TÞ ¼ @w
@x

@T

@y
� @w
@y

@T

@x
: (3)

The first and second terms on the right-hand side of Eq. (1)

represent diffusion and advection, respectively. The stream

function wðx; y; tÞ is determined from the temperature field

Tðx; y; tÞ as follows:

r2wðx; y; tÞ ¼ �Ra
@T

@x
; (4)

where Ra is the Rayleigh number. The stream function also

provides the fluid velocity field, i.e.,

vðx; y; tÞ ¼ @w
@y

; � @w
@x

� �
: (5)

The system is defined in the unit square: x 2 ½0; 1� and

y 2 ½0; 1�. The boundary conditions for the temperature field

Tðx; y; tÞ are given by

@Tðx; y; tÞ
@x

����
x¼0

¼ @Tðx; y; tÞ
@x

����
x¼1

¼ 0; (6)

Tðx; y; tÞjy¼0 ¼ 1; Tðx; y; tÞjy¼1 ¼ 0; (7)

where the temperature at the bottom (y ¼ 0) is higher than at

the top (y ¼ 1). The stream function wðx; y; tÞ satisfies the

Dirichlet zero boundary condition on both x and y, i.e.,

wðx; y; tÞjx¼0 ¼ wðx; y; tÞjx¼1 ¼ 0; (8)

wðx; y; tÞjy¼0 ¼ wðx; y; tÞjy¼1 ¼ 0: (9)

Owing to this set of boundary conditions given by Eqs. (6),

(7) and Eqs. (8), (9), the system does not possess spatial

translational symmetry.

B. Variational components of the temperature field

To simplify the boundary conditions in Eq. (7), we con-

sider the following variational component Xðx; y; tÞ of the

temperature field Tðx; y; tÞ:

Tðx; y; tÞ ¼ ð1� yÞ þ Xðx; y; tÞ: (10)

Inserting Eq. (10) into Eq. (1) and Eq. (4), we derive

@

@t
Xðx; y; tÞ ¼ r2X þ Jðw;XÞ � @w

@x
; (11)

and

r2wðx; y; tÞ ¼ �Ra
@X

@x
: (12)

Applying Eq. (10) to Eqs. (6) and (7), we obtain the follow-

ing boundary conditions for Xðx; y; tÞ:

@Xðx; y; tÞ
@x

����
x¼0

¼ @Xðx; y; tÞ
@x

����
x¼1

¼ 0; (13)

Xðx; y; tÞjy¼0 ¼ Xðx; y; tÞjy¼1 ¼ 0: (14)

That is, the field Xðx; y; tÞ satisfies the Neumann zero bound-

ary condition on x and the Dirichlet zero boundary condition

on y.

In the derivation below, it should be noted that Eq. (12)

can also be written in the following form:

wðx; y; tÞ ¼
ð1

0

dx0
ð1

0

dy0Gðx; y; x0; y0Þ @
@x0

Xðx0; y0; tÞ; (15)

where the Green’s function Gðx; y; x0; y0Þ is the solution to

r2Gðx; y; x0; y0Þ ¼ �Ra dðx� x0Þ dðy� y0Þ; (16)

under the Dirichlet zero boundary condition on both x and y.

In the following two subsections, we analyze the dynamical

equation (11) using Eq. (12) or Eq. (15), under the boundary

conditions given by Eqs. (13), (14) and Eqs. (8), (9).
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C. Time-periodic solution and its Floquet-type system

In general, a stable time-periodic solution to Eq. (11),

which represents oscillatory convection in the Hele-Shaw

cell, can be described by

Xðx; y; tÞ ¼ X0ðx; y;HðtÞÞ; _HðtÞ ¼ X; (17)

where H and X are the collective phase and collective fre-

quency, respectively.51 The time-periodic solution

X0ðx; y;HÞ has the 2p-periodicity with respect to H, i.e.,

X0ðx; y;Hþ 2pÞ ¼ X0ðx; y;HÞ. Inserting Eq. (17) into Eqs.

(11) and (12), we find that X0ðx; y;HÞ satisfies

X
@

@H
X0ðx; y;HÞ ¼ r2X0 þ Jðw0;X0Þ �

@w0

@x
; (18)

where

r2w0ðx; y;HÞ ¼ �Ra
@X0

@x
: (19)

Let uðx; y;H; tÞ represent a small disturbance to the time-

periodic solution X0ðx; y;HÞ and consider a slightly per-

turbed solution

Xðx; y; tÞ ¼ X0ðx; y;HðtÞÞ þ uðx; y;HðtÞ; tÞ: (20)

Equation (11) is then linearized with respect to uðx; y;H; tÞ
as follows:

@

@t
uðx; y;H; tÞ ¼ Lðx; y;HÞuðx; y;H; tÞ: (21)

Here, the linear operator Lðx; y;HÞ is explicitly given by

Lðx; y;HÞuðx; y;HÞ ¼ Lðx; y;HÞ � X
@

@H

� �
uðx; y;HÞ; (22)

where

Lðx; y;HÞuðx; y;HÞ ¼ r2uþ Jðw0; uÞ þ Jðwu;X0Þ �
@wu

@x
:

(23)

Similarly to the time-periodic solution X0ðx; y;HÞ, the func-

tion uðx; y;HÞ satisfies the Neumann zero boundary condi-

tion on x and the Dirichlet zero boundary condition on y. In

Eq. (23), the function wuðx; y;HÞ is the solution to

r2wuðx; y;HÞ ¼ �Ra
@u

@x
; (24)

under the Dirichlet zero boundary condition on both x and y.

Note that Lðx; y;HÞ is periodic in time through H, and there-

fore, Eq. (21) is a Floquet-type system with a periodic linear

operator.

The phase reduction method simplifies the dynamics of

the system by projecting it onto the phase direction along the

limit cycle of the oscillatory Hele-Shaw convection. For this

purpose, we introduce the adjoint operator L�ðx; y;HÞ of the

linearized operator Lðx; y;HÞ around the time-periodic

solution X0ðx; y;HÞ and its zero eigenfunction U�0ðx; y;HÞ.
Defining the inner product of two functions as

½½u�ðx; y;HÞ; uðx; y;HÞ��

¼ 1

2p

ð2p

0

dH
ð1

0

dx

ð1

0

dy u�ðx; y;HÞuðx; y;HÞ; (25)

we introduce the adjoint operator of the linear operator

Lðx; y;HÞ by

½½u�ðx; y;HÞ; Lðx; y;HÞuðx; y;HÞ��
¼ ½½L�ðx; y;HÞu�ðx; y;HÞ; uðx; y;HÞ��: (26)

By partial integration, the adjoint operator L�ðx; y;HÞ is ex-

plicitly given by

L�ðx; y;HÞu�ðx; y;HÞ ¼ L�ðx; y;HÞ þ X
@

@H

� �
u�ðx; y;HÞ;

(27)

where

L�ðx; y;HÞu�ðx; y;HÞ ¼ r2u� þ @

@x
u�
@w0

@y

� �
� @

@y
u�
@w0

@x

� �

þ @

@x
½w�u;x � w�u;y�: (28)

The function u�ðx; y;HÞ also satisfies the Neumann zero

boundary condition on x and the Dirichlet zero boundary

condition on y. In Eq. (28), the two functions, w�u;xðx; y;HÞ
and w�u;yðx; y;HÞ, are the solutions to

r2w�u;xðx; y;HÞ ¼ �Ra
@

@x
u�

@X0

@y
� 1

� �� �
; (29)

r2w�u;yðx; y;HÞ ¼ �Ra
@

@y
u�
@X0

@x

� �
; (30)

under the Dirichlet zero boundary condition on both x and y,

respectively. Details of the derivation of the adjoint operator

L�ðx; y;HÞ are given in Appendix A.

D. Floquet zero eigenfunctions

In the calculation below, we use the Floquet eigenfunc-

tions associated with the zero eigenvalue, i.e.,

Lðx; y;HÞU0ðx; y;HÞ ¼ Lðx; y;HÞ �X
@

@H

� �
U0ðx; y;HÞ ¼ 0;

(31)

L�ðx;y;HÞU�0ðx;y;HÞ¼ L�ðx;y;HÞþX
@

@H

� �
U�0ðx;y;HÞ¼ 0:

(32)

Note that the right zero eigenfunction U0ðx; y;HÞ can be

chosen as

U0ðx; y;HÞ ¼
@

@H
X0ðx; y;HÞ; (33)
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which is confirmed by differentiating Eq. (18) with respect

to H. Using the inner product (25) with the right zero eigen-

function (33), the left zero eigenfunction U�0ðx; y;HÞ is nor-

malized as

½½U�0ðx; y;HÞ; U0ðx; y;HÞ��

¼ 1

2p

ð2p

0

dH
ð1

0

dx

ð1

0

dy U�0ðx; y;HÞU0ðx; y;HÞ ¼ 1:

(34)

Here, we note that the following equation holds (see also

Refs. 20 and 22):

@

@H

ð1

0

dx

ð1

0

dy U�0ðx; y;HÞU0ðx; y;HÞ
" #

¼
ð1

0

dx

ð1

0

dy U�0ðx; y;HÞ
@

@H
U0ðx; y;HÞ

�

þ U0ðx; y;HÞ
@

@H
U�0ðx; y;HÞ

�

¼ 1

X

ð1

0

dx

ð1

0

dy ½U�0ðx; y;HÞLðx; y;HÞU0ðx; y;HÞ

� U0ðx; y;HÞL�ðx; y;HÞU�0ðx; y;HÞ� ¼ 0: (35)

Therefore, it turns out that the following normalization con-

dition is satisfied independently for each value of H:ð1

0

dx

ð1

0

dy U�0ðx; y;HÞU0ðx; y;HÞ ¼ 1: (36)

In the following two subsections, using the time-periodic so-

lution and its Floquet zero eigenfunctions, we formulate a

theory for the collective phase description of oscillatory

Hele-Shaw convection.

E. Oscillatory convection with weak perturbations

In this subsection, we consider a single Hele-Shaw cell

exhibiting oscillatory convection with a weak perturbation to

the temperature field as described by the following equation:

@

@t
Xðx; y; tÞ ¼ r2X þ Jðw;XÞ � @w

@x
þ �pðx; y; tÞ: (37)

The weak perturbation is denoted by �pðx; y; tÞ. Here, we

assume that the perturbed solution is always near the limit-

cycle orbit. Using the idea of phase reduction,2 we can derive

a phase equation from the perturbed equation (37). Namely,

we project the dynamics of the perturbed equation (37) onto

the unperturbed solution as

_HðtÞ ¼
ð1

0

dx

ð1

0

dy U�0ðx; y;HÞ
@

@t
Xðx; y; tÞ

’ Xþ �
ð1

0

dx

ð1

0

dy U�0ðx; y;HÞpðx; y; tÞ; (38)

where we approximated Xðx; y; tÞ by the unperturbed solution

X0ðx; y;HÞ and used the fact that

ð1

0

dx

ð1

0

dy U�0ðx; y;HÞ
@

@t
X0ðx; y;HÞ

¼ X
ð1

0

dx

ð1

0

dy U�0ðx; y;HÞU0ðx; y;HÞ ¼ X: (39)

Therefore, the phase equation describing the oscillatory

Hele-Shaw convection with a weak perturbation is approxi-

mately obtained in the following form:

_HðtÞ ¼ Xþ �
ð1

0

dx

ð1

0

dy Zðx; y;HÞpðx; y; tÞ; (40)

where the phase sensitivity function is defined as

Zðx; y;HÞ ¼ U�0ðx; y;HÞ: (41)

It should be noted that Eq. (40) corresponds to a phase equa-

tion that is derived for a perturbed limit-cycle oscillator

described by a finite-dimensional dynamical system (see Refs.

1, 2, and 22–26). In particular, the phase variable HðtÞ
depends only on time. However, reflecting the aspects of an

infinite-dimensional dynamical system, the phase sensitivity

function Zðx; y;HÞ of the oscillatory Hele-Shaw convection

possesses infinitely many components that are continuously

parameterized by the two variables, i.e., x and y.

Here, we describe a numerical method for obtaining the

left zero eigenfunction (i.e., the phase sensitivity function).

From Eq. (32), the phase sensitivity function Zðx; y;HÞ satisfies

X
@

@H
Zðx; y;HÞ ¼ �L�ðx; y;HÞZðx; y;HÞ; (42)

which can be transformed into

@

@s
Zðx; y;�XsÞ ¼ L�ðx; y;�XsÞZðx; y;�XsÞ; (43)

where H ¼ �Xs. To numerically calculate the eigenfunction

associated with the zero eigenvalue (i.e., the phase sensitivity

function), it is convenient to evolve Eq. (43) with the normal-

ization condition (36). Because the limit-cycle solution is line-

arly stable and therefore the eigenvalues of all other

eigenfunctions have negative real parts, the functional compo-

nents corresponding to non-zero eigenvalues eventually decay

and the solution converges to the phase sensitivity function

with the zero eigenvalue. For ordinary differential equations,

this method is called the adjoint method.22–26 In Refs. 20 and

21, we used a similar method for partial differential equations.

F. Weakly coupled Hele-Shaw cells exhibiting
oscillatory convection

In this subsection, we consider weakly coupled Hele-

Shaw cells exhibiting oscillatory convection described by

the following equation:15

@

@t
Xrðx; y; tÞ ¼ r2Xr þ Jðwr;XrÞ �

@wr

@x
þ �ðXs � XrÞ;

(44)

for ðr; sÞ ¼ ð1; 2Þ or (2, 1), where the stream function of

each system is determined by
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r2wrðx; y; tÞ ¼ �Ra
@Xr

@x
: (45)

Two identical Hele-Shaw cells exhibiting oscillatory convec-

tion are mutually coupled through corresponding temperatures

at each spatial point,52 where the coupling parameter is denoted

by �. Here, we assume that unperturbed oscillatory Hele-Shaw

convection is a stable time-periodic solution and that the cou-

pling between the two Hele-Shaw cells is sufficiently weak.

Under this assumption, as in the preceding subsection, we can

obtain a phase equation from Eq. (44) as follows:

_HrðtÞ ¼ Xþ �
ð1

0

dx

ð1

0

dy Zðx; y;HrÞ

� ðX0ðx; y;HsÞ � X0ðx; y;HrÞÞ: (46)

Applying the averaging method2 to Eq. (46), we can derive

the following phase equation:

_HrðtÞ ¼ Xþ �C Hr �Hsð Þ; (47)

where the phase coupling function is given by

CðHÞ ¼ 1

2p

ð2p

0

dk
ð1

0

dx

ð1

0

dy Zðx; y; kþHÞ

� ðX0ðx; y; kÞ � X0ðx; y; kþHÞÞ: (48)

The phase coupling function depends only on the phase dif-

ference, and the type of coupling (e.g., in-phase or anti-

phase) is determined by the anti-symmetric component of

the phase coupling function,2 i.e.,

CaðHÞ ¼ CðHÞ � Cð�HÞ: (49)

Finally, we note that the form of Eq. (47) is the same as that of

the phase equation which is derived from weakly coupled

limit-cycle oscillators described by finite-dimensional dynami-

cal systems (see Ref. 2). That is, two coupled systems of oscil-

latory convection can be reduced to coupled phase oscillators,

similarly to the case of ordinary limit-cycle oscillators.

III. NUMERICAL ANALYSIS OF OSCILLATORY HELE-
SHAW CONVECTION

In this section, using numerical simulations of oscilla-

tory Hele-Shaw convection, we illustrate the theory devel-

oped in the preceding section.

A. Spectral transform and order parameters

In visualizing the limit-cycle oscillation of the spatio-

temporal field variable, it is convenient to use the spectral

representation of the field variable Xðx; y; tÞ. Considering the

boundary conditions of Xðx; y; tÞ, i.e., Eqs. (13) and (14), we

introduce the following spectral transform:

HjkðtÞ ¼
ð1

0

dx

ð1

0

dy Xðx; y; tÞcosðpjxÞsinðpkyÞ; (50)

for j ¼ 0; 1; 2;… and k ¼ 1; 2;…. In visualizing the limit-

cycle orbit in the infinite-dimensional state space, we project the

time-periodic solution X0ðx; y;HÞ onto the H11- H22 plane as

H11ðHÞ ¼
ð1

0

dx

ð1

0

dy X0ðx; y;HÞcosðpxÞsinðpyÞ; (51)

H22ðHÞ ¼
ð1

0

dx

ð1

0

dy X0ðx; y;HÞcosð2pxÞsinð2pyÞ; (52)

which can be considered as a pair of order parameters quanti-

fying the variations in the first and second long-wavelength

spectral components of the field variable.

B. Time-periodic solution and phase sensitivity
function

In this subsection, we first consider a single Hele-Shaw

cell exhibiting oscillatory convection described by the partial

differential equation (11). We use the pseudospectral method

in numerical simulations, which is a standard numerical

method in computational fluid dynamics that integrates the

dynamical equation in the spectral representation while cal-

culating the nonlinear terms in the real-space representation

(see, e.g., Refs. 27 and 28 for pseudospectral methods). The

field variables are decomposed using a sine expansion with

128 modes for the Dirichlet zero boundary condition and a

cosine expansion with 128 modes for the Neumann zero

boundary condition. The initial values were chosen so that

the system exhibits single-cellular (i.e., one vortex) oscilla-

tory convection.53 The Rayleigh number was fixed to

Ra ¼ 480, giving a collective frequency of X ’ 622.

Figure 1 shows the limit-cycle orbit projected onto the

H11- H22 plane obtained from our numerical simulations of

the dynamical equation (11). Snapshots of the time-periodic

solution X0ðx; y;HÞ and other associated functions, i.e.,

T0ðx; y;HÞ ¼ ð1� yÞ þ X0ðx; y;HÞ, w0ðx; y;HÞ, U0ðx; y;HÞ,

FIG. 1. (a) Limit-cycle orbit projected

onto the H11-H22 plane. (b) Wave

forms of H11ðHÞ and H22ðHÞ. The

Rayleigh number is Ra ¼ 480, and

then the collective frequency is

X ’ 622.

043129-5 Y. Kawamura and H. Nakao Chaos 23, 043129 (2013)



and Zðx; y;HÞ, are shown in Fig. 2. The phase sensitivity

function Zðx; y;HÞ was obtained using the numerical method

explained in Sec. II E for the spectral representation of Eq.

(43). The typical shapes of both the time-periodic solution

X0ðx; y;HÞ and the phase sensitivity function Zðx; y;HÞ with

respect to H are shown in Fig. 3.

Here, we note that in this case, the phase sensitivity

function Zðx; y;HÞ possesses a special property.54 Namely,

for each H, similarly to the time-periodic solution

X0ðx; y;HÞ, the phase sensitivity function Zðx; y;HÞ is anti-

symmetric with respect to the center of the system:

X0ð�xd;�yd;HÞ ¼ �X0ðxd; yd;HÞ; (53)

Zð�xd;�yd;HÞ ¼ �Zðxd; yd;HÞ; (54)

where xd ¼ x� 1=2 and yd ¼ y� 1=2. Therefore, the phase

sensitivity function is equal to zero at the central point, i.e.,

Zðx ¼ 1=2; y ¼ 1=2;HÞ ¼ 0. In addition, the spatial integral

of the phase sensitivity function also becomes zero:

ð1

0

dx

ð1

0

dy Zðx; y;HÞ ¼ 0: (55)

FIG. 2. Snapshots of T0ðx; y;HÞ, w0ðx; y;HÞ, X0ðx; y;HÞ, U0ðx; y;HÞ, and Zðx; y;HÞ for H ¼ 0, p=2, p, 3p=2.
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Namely, when the weak perturbation is spatially uniform, i.e.,

pðx; y; tÞ ¼ qðtÞ, the collective phase is neither advanced nor

delayed by the perturbation. It should also be noted that the

phase sensitivity function Zðx; y;HÞ is spatially localized; the

amplitudes of the phase sensitivity function Zðx; y;HÞ with

respect to H in the top-right and bottom-left corner regions of

the system are much larger than in the other regions.

C. Phase synchronization between two weakly
coupled Hele-Shaw cells exhibiting oscillatory
convection

In this subsection, as in Ref. 15, we consider two weakly

coupled Hele-Shaw cells exhibiting oscillatory convection

described by the partial differential equation (44). Here, we

assume that unperturbed oscillatory Hele-Shaw convection is

described by a stable time-periodic solution and that the cou-

pling between the Hele-Shaw cells is sufficiently weak.

Under these assumptions, we can theoretically analyze the

phase synchronization between the Hele-Shaw cells exhibit-

ing oscillatory convection.

The anti-symmetric component of the phase coupling

function calculated using Eqs. (48) and (49) is shown in Fig.

4(a). As can be seen, the phase coupling function describes

in-phase (attractive) coupling, i.e., dCaðHÞ=dHjH¼0 < 0 and

dCaðHÞ=dHjH¼6p > 0, such that the two Hele-Shaw cells of

oscillatory convection will become in-phase synchronized.

Figure 4(b) shows the time evolution of the collective

phase difference jH1 �H2j between the two Hele-Shaw cells

of oscillatory convection, which started from an almost anti-

phase state with the coupling parameter � ¼ 0:05. The two

Hele-Shaw cells of oscillatory convection eventually became

in-phase synchronized, namely, H1 ¼ H2. Comparing our

direct numerical simulation of Eq. (44) to the theory, i.e.,
_H ¼ �CaðHÞ, we find perfect agreement between the two.

Similarly, we can also consider phase synchronization

between clock-wise convection and counter-clock-wise con-

vection as mentioned in Appendix B.

IV. CONCLUDING REMARKS

We developed a theory for the collective phase descrip-

tion of oscillatory convection in Hele-Shaw cells, by which a

system of oscillatory convection can be reduced to a phase

oscillator. On the basis of our theory, we analyzed the phase

synchronization between two weakly coupled Hele-Shaw

cells exhibiting oscillatory convection. The key component

of our theory is the phase sensitivity function of the

FIG. 4. (a) Anti-symmetric component

of the phase coupling function, i.e.,

CaðHÞ ¼ CðHÞ � Cð�HÞ. (b) Time

evolution of the collective phase dif-

ference, i.e., jH1 �H2j, with the cou-

pling parameter � ¼ 0:05.

FIG. 3. Typical shapes of both

X0ðx; y;HÞ and Zðx; y;HÞ with respect

to H at ðx; yÞ ¼ ð0:9; 0:9Þ [Top-Right

(TR)], (0.1, 0.1) [Bottom-Left (BL)],

(0.1, 0.9) [Top-Left (TL)], (0.9, 0.1)

[Bottom-Right (BR)].
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oscillatory Hele-Shaw convection, which quantifies its phase

response to weak perturbations applied at each spatial point.

The notion of collective phase used in this paper origi-

nated from the phase of the collective oscillation emerging

from coupled individual phase oscillators.17–20 In this paper,

as in Ref. 20, the collective phase is associated with temporal

translational symmetry breaking in partial differential equa-

tions. In general, the phase arises not only from temporal

translational symmetry breaking but also from spatial transla-

tional symmetry breaking.2 In fact, the phase dynamics of spa-

tially periodic structures, based on spatial translational

symmetry breaking, have been extensively developed,29–32

and the phase dynamics approach to spatially periodic patterns

is commonly used for fluid systems33–39 (see also Refs. 4 and

5). In addition, the so-called interface dynamics or pulse dy-

namics of patterns are also essentially based on spatial transla-

tional symmetry breaking.40–46 In contrast to these studies,

our formulation in this paper is based only on temporal trans-

lational symmetry breaking. Therefore, the formulation is ap-

plicable to oscillatory Hele-Shaw convection, although this

system does not possess spatial translational symmetry owing

to its boundary conditions. It should also be noted that the

treatments of the boundary conditions for the collective phase

descriptions, including the detailed analysis of the non-trivial

bilinear concomitant (see Appendix A), are newly developed

in this paper for the first time, because the nonlinear Fokker-

Planck equations studied in Refs. 17–20 satisfy periodic

boundary conditions and do not require such treatments.

We also note that the phase variable depends only on

time in Eqs. (40) and (47), and that space-dependent phase

variables cannot be defined for the oscillatory Hele-Shaw

convection. For comparison, consider oscillatory reaction-

diffusion systems described by @tXðr; tÞ ¼ FðXÞ þ D̂r2X,

where _X ¼ FðXÞ represents a limit-cycle oscillator located

at each spatial point r; an oscillatory reaction-diffusion sys-

tem can be considered as “coupled oscillators,” so that

space-dependent phase variables can be defined, and nonlin-

ear phase diffusion equations, e.g., Burgers-type equations or

Kuramoto-Sivashinsky equations, can then be derived by the

conventional phase reduction method.2 In contrast, the oscil-

latory Hele-Shaw convection is described by Eq. (1), in

which both terms on the right-hand side represent

“interactions,” since they involve the spatial gradient. Thus,

a system of oscillatory Hele-Shaw convection can not be

considered as “coupled oscillators,” so that space-dependent

phase variables can not be defined. In general, as mentioned

in Ref. 2, even though a fluid system exhibits oscillatory

motion, the system can not be considered as “coupled oscil-

lators,” which is in sharp contrast to the oscillatory reaction-

diffusion system. The oscillatory Hele-Shaw convection is

generated by the whole system, and the oscillation is a limit-

cycle solution in the infinite-dimensional state space

described genuinely by the partial differential equation.

Therefore, only the collective phase description method can

be applied, in which the collective phase is assigned to the

temporal translational symmetry breaking in the partial dif-

ferential equation and it depends only on time. As mentioned

above, when fluid systems possess spatial translational sym-

metry, conventional phase dynamics of spatially periodic

structures can be developed, in which the phase variables are

space-dependent (see, e.g., Refs. 2, 4, 5, 29, 30, and 39).

However, Hele-Shaw cells do not possess spatial transla-

tional symmetry owing to the boundary conditions, and so

the conventional phase reduction method can not be applied.

Finally, we note the broad applicability of our approach,

which is not restricted to the oscillatory Hele-Shaw convec-

tion. If we assume that a limit-cycle solution is stable and the

perturbations are sufficiently weak, i.e., the perturbed solution

is always near the limit-cycle orbit, similarly to ordinary dif-

ferential equations, the partial differential equations can gener-

ally be reduced to phase equations by our approach. There are

abundant examples of rhythmic phenomena in nature that can

be described by partial differential equations, such as geophys-

ical fluid dynamics,12–16 and the phase description approach

has the capability to play a central role in such areas.
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APPENDIX A: DERIVATION OF THE ADJOINT
OPERATOR

In this appendix, we describe the details of the deriva-

tion of the adjoint operator L�ðx; y;HÞ given in Eqs. (27)

and (28) (see also, e.g., Refs. 47 and 48 for mathematical

terms). From Eqs. (22) and (23), the linear operator

Lðx; y;HÞ is given by

Lðx; y;HÞuðx; y;HÞ ¼ @
2u

@x2
þ @

2u

@y2
� @w0

@y

@u

@x

þ @w0

@x

@u

@y
þ @wu

@x

@X0

@y
� 1

� �

� @wu

@y

@X0

@x
� X

@u

@H
: (A1)

By partial integration, each term of the inner product

½½u�ðx; y;HÞ;Lðx; y;HÞuðx; y;HÞ�� can be transformed into

��
u�;

@2u

@x2

��
¼ 1

2p

ð2p

0

dH
ð1

0

dy u�
@u

@x

� �x¼1

x¼0

� @u�

@x
u

� �x¼1

x¼0

( )

þ
��
@2u�

@x2
; u

��
; (A2)

��
u�;

@2u

@y2

��
¼ 1

2p

ð2p

0

dH
ð1

0

dx u�
@u

@y

� �y¼1

y¼0

� @u�

@y
u

� �y¼1

y¼0

( )

þ
��
@2u�

@y2
; u

��
; (A3)
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��
u�;� @w0

@y

@u

@x

��
¼ � 1

2p

ð2p

0

dH
ð1

0

dy u�
@w0

@y
u

� �x¼1

x¼0

þ
��
@

@x
u�
@w0

@y

� �
; u

��
; (A4)

��
u�;

@w0

@x

@u

@y

��
¼ 1

2p

ð2p

0

dH
ð1

0

dx u�
@w0

@x
u

� �y¼1

y¼0

þ
��
� @

@y
u�
@w0

@y

� �
; u

��
; (A5)

��
u�;

@wu

@x

@X0

@y
� 1

� ���

¼ 1

2p

ð2p

0

dH
ð1

0

dy u�
@X0

@y
� 1

� �
wu

� �x¼1

x¼0

þ
��
� @

@x
u�

@X0

@y
� 1

� �� �
;wu

��
; (A6)

��
u�;� @wu

@y

@X0

@x

��
¼ � 1

2p

ð2p

0

dH
ð1

0

dx u�
@X0

@x
wu

� �y¼1

y¼0

þ
��
@

@y
u�
@X0

@x

� �
;wu

��
; (A7)

��
u�;�X

@u

@H

��
¼ � X

2p

ð1

0

dx

ð1

0

dy ½u� u�H¼2p
H¼0 þ

��
X
@u�

@H
; u

��
:

(A8)

Using the Green’s function Gðx; y; x0; y0Þ in Eq. (16), the

function wuðx; y;HÞ given in Eq. (24) can also be written in

the following form:

wuðx; y;HÞ ¼
ð1

0

dx0
ð1

0

dy0Gðx; y; x0; y0Þ @uðx0; y0;HÞ
@x0

: (A9)

In Eqs. (A6) and (A7), we perform the following manipulations:��
� @

@x
u�

@X0

@y
� 1

� �� �
;wu

��

¼ � 1

2p

ð2p

0

dH
ð1

0

dx

ð1

0

dy
@

@x
u�

@X0

@y
� 1

� �� �
wu

¼ � 1

2p

ð2p

0

dH
ð1

0

dx

ð1

0

dy

ð1

0

dx0
ð1

0

dy0Gðx; y; x0; y0Þ

� @u0

@x0
@

@x
u�

@X0

@y
� 1

� �� �

¼ � 1

2p

ð2p

0

dH
ð1

0

dx

ð1

0

dy

ð1

0

dx0
ð1

0

dy0Gðx0; y0; x; yÞ

� @u

@x

@

@x0
u�0

@X00
@y0
� 1

� �� �

¼ � 1

2p

ð2p

0

dH
ð1

0

dx

ð1

0

dy w�u;x
@u

@x

¼ � 1

2p

ð2p

0

dH
ð1

0

dy ½w�u;x u�x¼1
x¼0 þ

��
@w�u;x
@x

; u

��
; (A10)

and

��
@

@y
u�
@X0

@x

� �
;wu

��

¼ 1

2p

ð2p

0

dH
ð1

0

dx

ð1

0

dy
@

@y
u�
@X0

@x

� �
wu

¼ 1

2p

ð2p

0

dH
ð1

0

dx

ð1

0

dy

ð1

0

dx0
ð1

0

dy0 Gðx; y; x0; y0Þ

� @u0

@x0
@

@y
u�
@X0

@x

� �

¼ 1

2p

ð2p

0

dH
ð1

0

dx

ð1

0

dy

ð1

0

dx0
ð1

0

dy0 Gðx0; y0; x; yÞ

� @u

@x

@

@y0
u�0

@X00
@x0

� �

¼ 1

2p

ð2p

0

dH
ð1

0

dx

ð1

0

dy w�u;y
@u

@x

¼ 1

2p

ð2p

0

dH
ð1

0

dy ½w�u;y u�x¼1
x¼0 þ

��
�
@w�u;y
@x

; u

��
; (A11)

where we used the following abbreviations:

X00 ¼ X0ðx0; y0;HÞ; u0 ¼ uðx0; y0;HÞ; u�0 ¼ u�ðx0; y0;HÞ;
(A12)

and defined the following functions:

w�u;xðx; y;HÞ ¼
ð1

0

dx0
ð1

0

dy0Gðx0; y0; x; yÞ @
@x0

� u�ðx0; y0;HÞ @X0ðx0; y0;HÞ
@y0

� 1

� �� �
;

(A13)

w�u;yðx; y;HÞ ¼
ð1

0

dx0
ð1

0

dy0Gðx0; y0; x; yÞ @
@y0

� u�ðx0; y0;HÞ @X0ðx0; y0;HÞ
@x0

� �
: (A14)

Here, we note that Eqs. (29) and (30) can be derived by

applying the Laplacian to Eqs. (A13) and (A14), respec-

tively. In this way, the adjoint operator L�ðx; y;HÞ, defined

in Eq. (26), is obtained as

L�ðx; y;HÞu�ðx; y;HÞ ¼ @
2u�

@x2
þ @

2u�

@y2
þ @

@x
u�
@w0

@y

� �

� @

@y
u�
@w0

@x

� �
þ
@w�u;x
@x

�
@w�u;y
@x
þ X

@u�

@H
: (A15)

In addition, the adjoint boundary conditions are given by

@u�ðx; y;HÞ
@x

����
x¼0

¼ @u�ðx; y;HÞ
@x

����
x¼1

¼ 0; (A16)

u�ðx; y;HÞjy¼0 ¼ u�ðx; y;HÞjy¼1 ¼ 0; (A17)
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which represent the Neumann zero boundary condition on x and the Dirichlet zero boundary condition on y. In fact, under

these adjoint boundary conditions, the bilinear concomitant S½u�ðx; y;HÞ; uðx; y;HÞ� ¼ ½½u�ðx; y;HÞ;Lðx; y;HÞuðx; y;HÞ��
�½½L�ðx; y;HÞu�ðx; y;HÞ; uðx; y;HÞ�� becomes zero, i.e.,

S½u�ðx; y;HÞ; uðx; y;HÞ� ¼ þ 1

2p

ð2p

0

dH
ð1

0

dy u�
@u

@x

� �x¼1

x¼0

� 1

2p

ð2p

0

dH
ð1

0

dy
@u�

@x
u

� �x¼1

x¼0

þ 1

2p

ð2p

0

dH
ð1

0

dx u�
@u

@y

� �y¼1

y¼0

� 1

2p

ð2p

0

dH
ð1

0

dx
@u�

@y
u

� �y¼1

y¼0

� 1

2p

ð2p

0

dH
ð1

0

dy u�
@w0

@y
u

� �x¼1

x¼0

þ 1

2p

ð2p

0

dH
ð1

0

dx u�
@w0

@x
u

� �y¼1

y¼0

þ 1

2p

ð2p

0

dH
ð1

0

dy u�
@X0

@y
� 1

� �
wu

� �x¼1

x¼0

� 1

2p

ð2p

0

dH
ð1

0

dx u�
@X0

@x
wu

� �y¼1

y¼0

� 1

2p

ð2p

0

dH
ð1

0

dy ½w�u;x u�x¼1
x¼0

þ 1

2p

ð2p

0

dH
ð1

0

dy ½w�u;y u�x¼1
x¼0 �

X
2p

ð1

0

dx

ð1

0

dy ½u� u�H¼2p
H¼0 ¼ 0: (A18)

Each term of the bilinear concomitant

S½u�ðx; y;HÞ; uðx; y;HÞ� vanishes for the following reasons:

the first and second terms become zero owing to the

Neumann zero boundary condition on x for u and u�, respec-

tively; the third and fourth terms, the Dirichlet zero boundary

condition on y for u� and u, respectively; the fifth to tenth

terms, the Dirichlet zero boundary condition on both x and y
for w0, wu, w�u;x, and w�u;y; the last term, the 2p-periodicity

with respect to H for both u and u�.

APPENDIX B: PHASE SYNCHRONIZATION BETWEEN
CLOCK-WISE CONVECTION AND COUNTER-CLOCK-
WISE CONVECTION

In this appendix, we consider a supplementary problem

for Sec. III C. From the reflection symmetry in x, the Hele-

Shaw cell exhibits clock-wise convection as well as the

counter-clock-wise convection shown in Fig. 2. Phase syn-

chronization between the clock-wise convection and coun-

ter-clock-wise convection can be considered as follows:

@

@t
~Xrðx; y; tÞ ¼ r2 ~Xr þ J ~wr; ~Xr

� �
� @

~wr

@x

þ � ~Xsðx; y; tÞ � ~Xrðx; y; tÞ
	 


; (B1)

for ðr; sÞ ¼ ð1; 2Þ or (2, 1), where ~X1 and ~w1 correspond to

the clock-wise convection, and ~X2 and ~w2 correspond to the

counter-clock-wise convection. Here, from the reflection

symmetry in x, this problem is equivalent to

@

@t
Xrðx; y; tÞ ¼ r2Xr þ Jðwr;XrÞ �

@wr

@x

þ �½Xsð1� x; y; tÞ � Xrðx; y; tÞ�; (B2)

for ðr; sÞ ¼ ð1; 2Þ or (2, 1), where both systems exhibit coun-

ter-clock-wise convection. The only difference between Eqs.

(44) and Eq. (B2) is the x-dependence of Xs, i.e., Xsðx; y; tÞ
in Eq. (44) and Xsð1� x; y; tÞ in Eq. (B2). Therefore, a

theory for the collective phase description of the system

described by Eq. (B2) can be developed in the same way.55

As in Sec. III C, the theory indicates in-phase synchroniza-

tion, which is confirmed by direct numerical simulations of

Eq. (B1) or Eq. (B2).
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