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Abstract—Identical uncoupled limit-cycle oscillators
receiving common noise show various patterns of coher-
ence, including complete desynchronization, phase cluster-
ing, and phase synchronization. We extend the averaging
method employed earlier to analyze the global coherence
properties of limit-cycle oscillators receiving weak Gaus-
sian white-noise [1] to the case where the common noise is
compound random Poisson impulses.

1. INTRODUCTION

The coherence of members of a population receiving a
common input models many real-world systems such as the
synchronization of various population and fruiting patterns
of plants and animals [2], the reproducibility of laser in-
tensity when driven by a common drive signal [3, 4], and
the reproducibility of spike trains from identical neurons
receiving identical fluctuating synaptic current [5]. Collec-
tive coherence in nature often manifest themselves to ca-
sual observers as rhythms and patterns that form despite the
seemingly random external forces that act upon the system.
A method to control such collective properties through ran-
dom external forcing would therefore have important appli-
cations in the control of complex dynamical systems.
In the realm of theoretical investigation, the phenomenon

of phase coherence due to common noise applied to an
ensemble of oscillating elements has been the subject of
research for some time. Originally, the phenomenon was
discovered in chaotic oscillators, but a quantitative theory
has not been found to explain the phenomenon [6, 7, 8].
A theory showing synchronization has been developed for
uncoupled limit-cycle oscillators receiving additive weak
Gaussian white-noise [9]. Removing the restriction of ad-
ditivity allows the formation of clusters [1], and the re-
moving the restriction of infinitesimal signal strengths adds
de-synchronization to the repertoire of ensemble behav-
ior [10, 11]. Non-identicality of the oscillators has also
been addressed [12], and gives rise to imperfect entrain-
ment characterized by intermittent failure of a phase locked
state. In the previous works on the synchronization phe-
nomena of limit-cycle oscillators, the stability of the syn-
chronized state was analyzed by considering the local Lya-
punov exponents of the separation between two oscillators.
The only piece of information necessary to assess the sta-

bility was the shape of the phase response curve (PRC) [13]
of the oscillators. The utility of this is obvious, because for
many systems of interest, it would not be possible to de-
duce the dynamical equations of the system. The PRC is
a relatively easy function to obtain experimentally without
having to know the specific details of the system. In this
paper, we analyze coherence properties of the system by
obtaining a global distribution function of the phase differ-
ence between two oscillators utilizing the PRC as the only
piece of information about the dynamical properties of each
oscillator.

2. THEORY

2.1. Model

We consider two phase oscillators receiveing a com-
mon sequence of random Poisson impulses. The dynam-
ical equation of the phase αth oscillator (α ∈ [1, 2]) is

θ̇α(t) = ωαt +
√
εχα(t) +G(θα(t), cn)

N∑

n=0
g(t − tn), (1)

θ(t) ∈ [0, 2π) is the phase of the oscillator at time t, tn the
arrival time of the nth impulse, g(t − tn) is the common
white impulsive noise with a jump of magnitude cn, and the
χ(α)(t) is assumed to be independent, identically distributed
zero-mean Gaussian white noise of unit intensity and with
correlation given by 〈χi,α(t)χ j,β(s)〉 = δα,βδi, jδ(t − s). The
mapG(φ, c) is the PRC. Given the impulse strength and the
phase at which an impulse arrives, it describes the phase-
dependent magnitude of the jump experienced by the oscil-
lator.

2.2. The forward-Kolmogorov equation

We rewrite the above equation as a stochastic jump-
diffusion equation [14, 15, 16],

dθα(t) = ωαdt +
√
εdWα(t) +

∫

C
G(θα(t), c)M(dt, dc), (2)

where dW(t) is a white-noise Gaussian increment and
M(dt, dc) the Poisson random measure of a marked Pois-
son point process. The expectations of the stochastic pro-
cesses are E[dW(t)] = 0 and E[M(dt, dc)] = λp(c)dcdt,
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where λ is the rate of the Poisson process and p(c) is the
distribution of the random marks. The previous equation is
a Langevin equation driven by an additional marked point
process, and is generally known as a stochastic differential
equation (SDE).
There are two such equations for the above system.

There is no coupling, but the two share an identical in-
put from the Poisson impulses and an independent input
from the Gaussian noise. In order to investigate the coher-
ence properties of the pair, we analyze the distribution of
their phase difference by utilizing the equivalent forward-
Kolmagorov equation of the SDE:

∂P(φ1, φ2, t)
∂t

=
ε

2



∂2P
∂φ21
+
∂2P
∂φ22


 −
(
ω1
∂P
∂φ1
+ ω2

∂P
∂φ2

)

−λP(φ1, φ2, t) + λ
∫

C
P
[
φ1 − η(φ1, c), φ2 − η(φ2, c)

]
×

∣∣∣∣∣∣1 −
∂ηi
∂φ j

∣∣∣∣∣∣ p(c)dc (3)

where ∂ηi∂φ j =
∂η
∂φ j
(φ j, c), i, j ∈ [1, 2].

The preceeding equation is written as a function of the
destination of a jump due to the jump process, φi(t) =
θi(t) + G(θi(t), c), and η(φi(t), c) = φi(t) − θi(t) is the jump
magnitude written as a function of the destination coordi-
nate, φi(t). We assume that θi(t) + G(θi(t), c) is a mono-
tonically increasing function of θi(t). As such, our cur-
rent theory is applicable only to the situation where com-
mon noise induces coherent behavior (synchronization and
clustering), because it is known from previous works that
if θi(t) + G(θi(t)) is monotonically increasing, the locked
phases are stable.

2.3. Averaging

The phase distribution function of an unperturbed oscil-
lator is uniform, as the phase is defined to be a constantly
increasing variable under such conditions. Random Pois-
son impulses will, however, give rise to non-uniformity in
the distribution [11]. In the limit that λ → 0, the single-
oscillator phase distribution can be approximated as uni-
form. Under such assumptions, we may change variables
as follows:

ψ =
φ1 + φ2
2
, ξ = φ1 − φ2, (4)

and assume that the joint probability density may be de-
coupled as P(φ1, φ2, t) ≈ S (ψ)U(ξ) with S (ψ) ≈ 1

2π . Such a
decoupling separates utilizes the fact that one variable is a
fast variable (ψ) and one variable is a slow variable (ξ), and
that the dynamics of the slow variable can be adequately
explained by averaging quantities that depend on the fast
variable over a period of the fast variable [17, 1].
The approximate forward-Kolmogorov equation may
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Figure 1: Simulation results of Eq 6. a), c) show the raster
plots (tick mark indicates time oscillator passed through
phase 0.) of 50 uncoupled phase oscillators receiving com-
mon Poisson noise. The plots show initial and final con-
ditions on the left and right, respectively. a) shows the
emergence of synchronization due to the common noise for
m = 1, and c) shows the emergence of two clusters due to
the common noise for m = 2. b), d) show phase plots of
the systems in a) and c), respectively, of a superset of os-
cillators (200 in both cases). Phase 0 is on the right most
point of the circle. The inset shows the intial conditions,
while the outer graph shows the emergent coherence due to
noise. Common simulation parameters were ε = 0.002 and
c = 0.06.

then be written as a PDE for ξ:

∂U
∂t
(ξ, t) = ε

∂2U
∂ξ2

(ξ, t) − λU(ξ, t) − (ω1 − ω2)
∂U
∂ξ
(ξ, t)

+λ

∫ ψ1

ψ0

∫

C
U
(
ξ − η(φ1, c) + η(φ2, c), t

)
∣∣∣∣∣∣1 −

∂ηi
∂φ j

∣∣∣∣∣∣ ×

p(c)dcdψ,

where
{
ξ ≥ 0 ψ0 =

ξ
2 , ψ1 = 2π −

ξ
2

ξ < 0 ψ0 = − ξ2 , ψ1 = 2π +
ξ
2

(5)

The ξ-dependent limits can be seen when one considers that
φi ∈ [0, 2π), ψ ∈ [0, 2π) and ξ ∈ [−2π, 2π). The preceding
equation is easy to interpret: The time rate of change in the
density at the range [ξ, ξ + dξ) changes due to 1) the first
term, which describes the diffusion due to the independent
noises added to each oscillator, 2) the second term, which
describes the average flux of pairs in the ensemble out of
the range [ξ, ξ+dξ), and 3), the third term, which describes
the flux of pairs in the ensemble into the range [ξ, ξ + dξ).
We note that the current approximation is valid only for
weak independent noise. We are working on a sufficient
theory for all independent noise strengths.
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Figure 2: a) Intermittency and b) switching induced by in-
depedent noise for a pair of oscillators. The time is in units
of oscillator period. Since the switching is caused mainly
by phase diffusion, the switch is not as sharp and immedi-
ate as it may appear here. Intermittency is the occasional
failure of synchronization, while switching is intermittency
that causes jumps between cluster states.
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Figure 3: Comparison of ξ = φ1 − φ2 found via direct SDE
simulation and iterative calculation of Eq. 5. The width of
the peaks of distributions occur due to the imperfect coher-
ence of the coherent states due to the effects of independent
noise. Location of peaks agree with previous work that
analyzed the stability of the coherent states, but the cur-
rent work takes into account the independent noise, which
in the real world may correspond to thermal noise or non-
identicality of the oscillators.

3. Simulation and numerical calculation

We measured the phase distribution function of a pair of
identical oscillators described by

φ̇α = ω +
√
εηα(t) + c

N∑

n=0
sin
(
mφα(t)

)
g(t − tn) (6)

It is known that if the PRC possesses a symmetry within
φ ∈ [0, 2π), which in the above case happens when m > 1,
m equivalent clustered states arise, with each state possess-
ing the same stability as the synchronized state [1]. In our
current treatment, we are able to predict qualitatively the
existence of such coherence, and quantitatively the width
of the peaks in the distribution which arise due to the im-
perfect locking of coherent states because of the indepen-
dent noise added to the system, called modulational inter-
mittency [18], Fig. 2. The qualitative behavior can be seen
in the raster plots and phase space snapshots of Fig. 1. It
should be noted that in the clustering case, individual os-

cillators switch stochastically between clusters when their
locking to a certain cluster fails due to the independent
noise.
The distribution described by Eq. 5 was found by iterat-

ing the solution until a stationary condition was reached. It
is seen that the results agree with simulation, Fig. 3.

4. Conclusion

We have formulated a method for finding the global dis-
tribution function describing coherent states of oscillators
receiving common Poisson impulses by using the averag-
ing method. This effectively reduces the problem to a 1
body problem, with a jump-diffusion forward Kolmogorov
equation that has an intuitive interpretation. The global out-
look is formulated in a less restrictive way than the local
stability analysis used earlier [10, 11] because it takes into
account the effects of indepedent noise, and may prove use-
ful in treating common-noise induced coherence for more
general types of oscillators, not just limit-cycles.
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