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Abstract—
We argue that the reliability of a limit-cycle oscillator

generally improves when it is driven by a random impul-
sive input. By reducing the dynamics of the oscillator to a
stochastic phase equation, we argue generally that the orbit
of a limit-cycle oscillator is statistically stabilized against
phase disturbances when it is driven by a weak impulsive
input regardless of its details, leading to an improvement in
its reproducibility. We demonstrate our theoretical results
by numerical simulations and experiments with a simple
electrical oscillator.

1. Introduction

It is now well established that mutually interacting limit-
cycle oscillators synchronize with each other [1]. Re-
cently, it has been demonstrated that nonlinear oscillators
can synchronize with each other through common uctu-
ating inputs, even in the absence of direct mutual interac-
tions. Such noise-induced synchronization of an ensemble
of nonlinear oscillators can also be interpreted as noise-
induced improvement in the reproducibility of the orbit
of a single oscillator, because repeated experiments with
a single oscillator using the same input signal is equiva-
lent to a single experiment with multiple oscillators using a
common input signal. Noise-induced synchronization, re-
producibility, or “consistency” as termed by some authors,
is widely observed in experimental systems ranging from
lasers to neurons [2, 3], where the dynamics of each ele-
ment can also be chaotic or stochastic.

For example, in electrophysiological experiments using
a single neuron from slice preparations of rat neocortex or
olfactory bulb [3], it is observed that the neuron evokes dif-
ferent spike sequences from trial to trial when it is driven by
a constant input current, whereas it evokes mostly the same
spike sequences over the trials when it is driven by a uc-
tuating input current. This phenomenon can be interpreted
as a noise-induced improvement in the reproducibility of
the orbit of a limit-cycle oscillator induced by a uctuating
input signal.

On the theoretical aspect, after several pioneer-
ing works [4], Teramae & Tanaka and Goldobin &
Pikovsky [5] adopted the phase reduction method [1] and
proved generally that uncoupled limit-cycle oscillators al-
ways synchronize with each other when they are driven by
a common weak Gaussian white noise. Using a similar

idea, we also argued generally that uncoupled limit-cycle
oscillators can synchronize with each other when they are
driven by random impulsive, telegraphic, or piecewise-
constant input signals [6].

In this paper, we adopt the theory of Poisson driven
Markov process [7] to analyze the case of impulsive in-
put signals. We generally prove that the reproducibility of
an oscillator orbit always improves for sufficiently weak
Poisson impulses. We also argue that when the impulses
are not weak, the oscillators can also undergo desynchro-
nization rather than synchronization. We demonstrate our
theoretical results experimentally by observing the effects
of Poisson impulses applied to a simple electrical circuit
exhibiting limit-cycle oscillations.

2. Numerical Example

As an example, we rst present the result of direct nu-
merical simulations using the FitzHugh-Nagumo (FN) neu-
ral oscillator. The FN oscillator is described by

u(t) = ε(v + c − du),
v(t) = v − v3/3 − u + I0 + I(t) + ξ(t), (1)

where v(t) represents the membrane potential of the neuron
at time t, u(t) the state of the ion channels in a reduced
form, ε, c, and d are parameters. I0 and I(t) represent the
constant component and the uctuating component of the
input current. ξ(t) represents a weak Gaussian-white noise
specied by 〈ξ(t)〉 = 0 and 〈ξ(t)ξ(s)〉 = Dδ(t − s), which
incorporates the effect of various uctuations. When ξ(t)
and I(t) are absent and I0 is xed at a constant value in
some appropriate range, this model exhibits a typical limit-
cycle oscillation, which corresponds to the periodic spiking
of the neuron. We x the parameters at ε = 0.08, c = 0.7,
d = 0.8, I0 = 0.8, and D = 0.0001 in the following.

Figure 1 displays the result of 50 repeated numerical
simulations of Eq. (1), where the spiking times of the os-
cillator (the point at which v changes its sign from negative
to positive) are plotted by dots. In Fig. 1(a), the oscilla-
tor is driven only by the constant input current I0. Due to
the weak noise ξ(t) applied independently at every trial, the
spiking times of the oscillators are considerably scattered.
This is due to the neutral stability of the limit cycle in the
phase direction. The orbital component of the perturba-
tions do not decay and gradually accumulate, which results
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Figure 1: 50 spiking sequences of the FN oscillator subject
to (a) only constant input current, and (b) random impulses
in addition to the constant input current.

in phase diffusion. Figure 1(b) displays the result of 50 re-
peated simulations in which the oscillators are driven not
only by the constant current I0 but also by random Poisson
impulses I(t) given by

I(t) =
N(t)∑

n=1
Inδ(t − tn), (2)

where {t1, t2, · · ·} represent the generation times of the im-
pulses, and {I1, I2, · · ·} the intensity of the impulses. We set
the mean interval between the impulses at τ = 10 and as-
sume that the intensity In of the impulse takes ±0.5 with
equal probability. In this case, the spiking times of the os-
cillator are reliably reproduced over the trials after an ini-
tial transient, even under the effect of the weak independent
noises. We analyze the mechanism leading to such behav-
ior in the next section.

3. Phase Reduction Analysis

The improvement in reproducibility is due to the statisti-
cal stabilization of perturbations in the phase direction in-
duced by random impulses. We formulate this fact using
stochastic differential equation in this section. Our model
is generally described by the following random dynamical
system:

X(t) = F(X; I0) + I(t), I(t) =
N(t)∑

n=1
Inδ(t − tn), (3)

where X represents the dynamical variable of the oscillator,
F its dynamics, I0 the constant component of the external
input, and I(t) the random impulsive input. We assume that
the impulses are generated by a Poisson process of rate λ
(so that the mean interval is τ = λ−1). We denote the to-
tal number of impulses generated up to time t by N(t), and
the generation times and intensities of the n-th impulse by

{tn, In}. Each impulse intensity In is chosen randomly from
a probability density function Q(I). We omit the weak in-
dependent noise in the following analysis, which is not im-
portant in the linear stability analysis. We assume that the
system has a single limit cycle X0(t) when only the constant
input I0 is given, and also that most initial conditions in the
phase space are eventually attracted to this limit cycle.

When λ is small, the mean interval between the impulses
becomes long, so that the oscillator almost always receives
only the constant input I0. The orbit is kicked off from the
limit cycle occasionally by an impulse, but it returns to the
limit cycle sufficiently quickly before the arrival of the next
impulse. In such a situation, we can reduce the evolution
equation (3), which generally contains multiple variables,
to a simplied equation of the scalar phase variable only. In
our previous paper [6], we formulated such phase reduction
using random phase maps. Here, we adopt the methods of
stochastic differential equations [7] for this purpose.

We rst rewrite Eq. (3) as a stochastic differential equa-
tion driven by the Poisson impulses as [7]

dX(t) = F(X; I0)dt +
∫
IM(dt, dI). (4)

Here, M(dt, dI) denotes the Poisson random measure [7],
which represents the number of impulses generated in the
time interval [t, t + dt] and whose intensity is in the range
[I, I+dI]. Its expectation value is given by E[M(dt, dI)] =
λQ(I)dtdI.

We then introduce a phase variable θ(X) ∈ [0, 1] along
the limit cycle X0(t) corresponding to the constant input
I0, which increases with constant angular velocity ω. We
can extend this denition of the phase variable to the whole
of phase-space (except phase singular points) by assigning
the same phase value to the set of points that eventually
converge to the same point on the limit cycle [1].

By applying the (generalized) Ito formula for the Poisson
driven Markov process [7] to Eq. (4), we obtain

dθ(t) = ωdt +
∫

[θ(X(t) + I) − θ(X(t))] M(dt, dI). (5)

Furthermore, by assuming that the orbit is (almost) always
on the limit cycle when it receives an impulse, we approx-
imate the X(t) in the above equations by X0(θ(t)). We then
obtain a closed phase equation for θ(t),

dθ(t) = ωdt +
∫

G(θ(t), I)M(dt, dI), (6)

where the functionG(θ, I) is dened as

G(θ, I) = θ(X0(θ) + I) − θ. (7)

G(θ, I) is a periodic function in θ representing the change in
the phase of the orbit after receiving an impulse of intensity
I at the point X0(θ) on the limit cycle. We refer to this
function as “phase map” hereafter.
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Now we consider the statistical stability of the phase
against small perturbations. A linearized equation for the
evolution of a small perturbation ψ(t) to the original phase
θ(t) is obtained from Eq. (6) as

dψ(t) =
∫

G′(θ(t), I)ψ(t)M(dt, dI), (8)

where ′ denotes differential by θ. By applying the Ito for-
mula to this equation, we obtain the following equation for
the logarithm of the absolute phase perturbation ln |ψ(t)|:

d ln |ψ(t)| =
∫

ln
∣∣∣1 +G′(θ(t), I)

∣∣∣M(dt, dI). (9)

By taking the expectation, we obtain

E[d ln |ψ(t)|] = Λdt, (10)

where we dened the Lyapunov exponentΛ that quanties
the mean growth rate of the small perturbation as

Λ = E[ln
∣∣∣1 +G′(θ(t), I)

∣∣∣]

= λ

∫
dIQ(I)

∫
dθP(θ) ln

∣∣∣1 +G′(θ, I)
∣∣∣ . (11)

Here, P(θ) is the stationary probability density of the phase
θ. When this Λ is negative, the phase perturbation de-
cays exponentially, resulting in the improvement of repro-
ducibility of the limit-cycle oscillator.

Particularly, when the intensities of the external impulses
are sufficiently small, we can generally argue for the nega-
tivity of Λ as follows. In this case, G(θ, I) can be approxi-
mated as

G(θ, I) & Z(θ) · I, (12)

where Z(θ) := ∇Xθ(X)|X=X0(θ) is the conventional phase
sensitivity function [1]. Since Z(θ) is a smooth periodic
function in θ, G(θ, I) is also smooth and does not uctuate
largely when |I| is small. In such a situation, 1 + G′(θ, I)
is always positive. Also, it is physically apparent that the
probability density function of the phase θ(t) becomes al-
most uniform,

P(θ) & 1, (13)

when the impulses are weak (this can also be shown analyt-
ically using the Master or the Frobenius-Perron equations).
Now, by using the periodicity of G(θ, I) in θ, we can gen-
erally prove the negativity of Λ as follows:

Λ & λ

∫
dIQ(I)

∫
dθ ln

∣∣∣1 +G′(θ, I)
∣∣∣

≤ λ

∫
dIQ(I)

∫
dθG′(θ, I)

= λ

∫
dIQ(I){G(1, I) −G(0, I)}

= 0. (14)

The equality holds only in the trivial case of the constant
G(θ, I). Thus, we can prove that Λ is always less than

0 for a general class of limit-cycle oscillators regardless
of their details when the random impulses are sufficiently
weak. Therefore, it is expected that the reproducibility of a
limit-cycle oscillator always improves when it is driven by
sufficiently weak random impulses. In the next section, we
will demonstrate this fact using an electric circuit receiving
random impulses.
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Figure 2: Phase maps of the FN model for several values
of the impulse intensity I.

Let us examine the phase maps of the FN oscillator now.
Figure 2 displays the phase maps G(θ, I) obtained for sev-
eral values of the impulse intensity I. When |I| is small,
the amplitude of the corresponding phase maps are also
small, so thatΛ is negative from the above argument. Thus,
the reproducibility improves by the external impulses as
demonstrated in Fig. 1(b). In contrast, when |I| is large, the
amplitude of the corresponding phase maps can also be-
come large and uctuates strongly (Eq.(12) does not hold
for large impulses). Λ can be positive in such cases, leading
to impulse-induced desynchronization.

4. Electric Circuit Experiments

In this section, we demonstrate the phenomenon of
impulse-induced reproducibility in a real experimental sys-
tem using a very simple electric circuit.

Our electric circuit was originally designed for ash-
ing an LED periodically (Fig. 3(a)). We use a com-
puter equipped with an AD/DA-converter board (CONTEC
ADA16-8/2) to generate an output signal (the impulses),
and to measure the voltages V1 and V2 at 2 separate loca-
tions in the circuit. Using a MOSFET, voltage impulses
from the AD/DA board was used to briey short circuit a
given section of the oscillator. The strength of the impulse
delivered was varied by adding a variable resistor in series
with the MOSFET. Changing the location in the circuit in
which to deliver the impulse naturally changes the response
of the circuit to a given impulse.
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Figure 3(b) displays typical limit cycle of the electric
circuit, which is qualitatively similar to the FN oscillator
we treated above. Figure 3(c) shows experimentally ob-
served phase maps obtained for two different intensities
of the impulses (i.e. the magnitude of the series resistor).
With these intensities of the impulses, the function G(θ, I)
is sufficiently smooth, and the absolute value of G′(θ, I) is
always smaller than 1. Therefore, we anticipate impulse-
induced reproducibility in this case. The results are shown
in Figs. 3(d) and (e), where two time sequences of V1 mea-
sured in two different experimental trials, and and their
spiking times are plotted. Under the effect of random im-
pulses, the two temporal sequences behave quite similarly.
In contrast, without impulses, the two temporal sequences
behave quite differently due to the internal noises of the
electric circuit. Thus, we see that noise-induced synchro-
nization can easily be observed in our simple experiment.
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Figure 3: Results of the circuit experiment. (a) circuit di-
agram, (b) limit cycle, (c) phase maps G(θ) obtained using
two intensities of the impulses, (d) superposition of two
measured temporal sequences of V1, and (e) spiking times.

Though noise-induced synchronization has already been
observed in a wide class of systems, we believe that care-
fully controlled experiments using simple experimental
systems can also be useful in deepening our insight in this
phenomenon. Specically, the experimental measurement
of the phase map, which is rather difficult in more com-

plicated and widely uctuating systems such as neurons,
can be accomplished simply and unambiguously in a sim-
ple system such as this. Our results reported here are only
preliminarily. More detailed quantitative analysis will be
reported in the future.

5. Summary

We proved theoretically that the reproducibility of noisy
limit-cycle oscillators generally improves when driven by
random impulses, and experimentally conrmed this theo-
retical prediction using an electric circuit. Our theory holds
for any limit-cycle oscillators that satisfy our assumptions
irrespective of their detailed structures. We thus expect
that synchronization or reproducibility of randomly driven
nonlinear oscillators caused by this mechanism can be ob-
served in various natural phenomena.
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